CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • 2.

    Xia, Y. et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nat. Phys. 5, 398 (2009).

    CAS 

    Google Scholar
     

  • 3.

    Hasan, M. Z., Xu, S.-Y. & Neupane, M. Topological Insulators: Fundamentals and Perspectives (Wiley, New York, 2015).


    Google Scholar
     

  • 4.

    Bansil, A., Lin, H. & Das, T. Colloquium: Topological band theory. Rev. Mod. Phys. 88, 021004 (2016).

    ADS 

    Google Scholar
     

  • 5.

    Wang, Z., Weng, H., Wu, Q., Dai, X. & Fang, Z. Three-dimensional Dirac semimetal and quantum transport in (text{Cd}_3text{As}_2). Phys. Rev. B 88, 125427 (2013).

    ADS 

    Google Scholar
     

  • 6.

    Neupane, M. et al. Observation of a three-dimensional topological Dirac semimetal phase in high-mobility (text{Cd}_3text{As}_2). Nat. Commun. 5, 3786 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 7.

    Xu, S.-Y. et al. Discovery of a Weyl Fermion semimetal and topological fermi arcs. Science 349, 613 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Lv, B. Q. et al. Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X 5, 031013 (2015).


    Google Scholar
     

  • 9.

    Neupane, M. et al. Observation of topological nodal fermion semimetal phase in ZrSiS. Phys. Rev. B 93, 201104 (2016).

    ADS 

    Google Scholar
     

  • 10.

    Yoshomi, R. et al. Dirac electron states formed at the heterointerface between a topological insulator and a conventional semiconductor. Nat. Mater. 13, 253–257 (2014).

    ADS 

    Google Scholar
     

  • 11.

    Fu, L. & Kane, C. L. Topological insulators with inversion symmetry. Phys. Rev. B 76, 045302 (2007).

    ADS 

    Google Scholar
     

  • 12.

    Zhao, Y. X. & Wang, Z. D. Novel ({mathbb{Z}}_2) topological metals and semimetals. Phys. Rev. Lett. 116, 016401 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Zeng, M. et al. Topological semimetals and topological insulators in rare earth monopnictides. arXiv:1504.03492 (2015).

  • 14.

    He, J. et al. Distinct electronic structure for the extreme magnetoresistance in YSb. Phys. Rev. Lett. 117, 267201 (2016).

    ADS 
    PubMed 

    Google Scholar
     

  • 15.

    Yang, H. .-Y. et al. Extreme magnetoresistance in the topologically trivial lanthanum monopnictide LaAs. Phys. Rev. B 96, 235128 (2017).

    ADS 

    Google Scholar
     

  • 16.

    Pavlosiuk, O., Swatek, P., Kaczorowski, D. & Wiśniewski, P. Magnetoresistance in LuBi and YBi semimetals due to nearly perfect carrier compensation. Phys. Rev. B 97, 235132 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 17.

    Guo, C. et al. Possible Weyl fermions in the magnetic Kondo system CeSb. NPJ Quantum Mater. 2, 39 (2017).

    ADS 

    Google Scholar
     

  • 18.

    Liang, D. D. et al. Extreme magnetoresistance and Shubnikov–de Haas oscillations in ferromagnetic DySb. APL Materials 6, 086105 (2018).

    ADS 

    Google Scholar
     

  • 19.

    Yu, Q.-H. et al. Magnetoresistance and Shubnikov–de Haas oscillation in YSb. EPL 119, 17002 (2017).

    ADS 

    Google Scholar
     

  • 20.

    Yang, H.-Y. et al. Interplay of Magnetism and Transport in HoBi. Phys. Rev. B 98, 045136 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 21.

    Pavlosiuk, O., Swatek, P. & Wiśniewski, P. Giant magnetoresistance, three-dimensional Fermi surface and origin of resistivity plateau in YSb semimetal. Sci. Rep. 6, 38691 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Pavlosiuk, O., Kleinert, M., Swatek, P., Kaczorowski, D. & Wiśniewski, P. Fermi surface topology and magnetotransport in semimetallic LuSb. Sci. Rep. 7, 12822 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Ali, M. N. et al. Large, non-saturating magnetoresistance in (text{ WTe}_2). Nature 514, 205 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    Liang, T. et al. Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal (text{ Cd}_3text{As}_2). Nat. Mater. 14, 280 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 25.

    Mun, E. et al. Magnetic field effects on transport properties of (text{ PtSn}_4). Phys. Rev. B 85, 035135 (2012).

    ADS 

    Google Scholar
     

  • 26.

    Huang, X. et al. Observation of the chiral-anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs. Phys. Rev. X 5, 031023 (2015).


    Google Scholar
     

  • 27.

    Wu, Y. et al. Asymmetric mass acquisition in LaBi: topological semimetal candidate. Phys. Rev. B 94, 081108 (2016).

    ADS 

    Google Scholar
     

  • 28.

    Niu, X. H. et al. Presence of exotic electronic surface states in LaBi and LaSb. Phys. Rev. B 94, 165163 (2016).

    ADS 

    Google Scholar
     

  • 29.

    Nayak, J. et al. Multiple Dirac cones at the surface of the topological metal LaBi. Nat. Commun. 8, 13942 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Lou, R. et al. Evidence of topological insulator state in the semimetal LaBi. Phys. Rev. B 95, 115140 (2017).

    ADS 

    Google Scholar
     

  • 31.

    Nummy, T. J. et al. Measurement of the atomic orbital composition of the near-fermi-level electronic states in the lanthanum monopnictides LaBi, LaSb, and LaAs. NPJ Quantum Mater. 3, 24 (2018).

    ADS 

    Google Scholar
     

  • 32.

    Feng, B. et al. Experimental observation of node-line-like surface states in LaBi. Phys. Rev. B 97, 155153 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 33.

    Zeng, L.-K. et al. Compensated semimetal LaSb with unsaturated magnetoresistance. Phys. Rev. Lett. 117, 127204 (2016).

    ADS 
    PubMed 

    Google Scholar
     

  • 34.

    Oinuma, H. et al. Three-dimensional band structure of LaSb and CeSb: absence of band inversion. Phys. Rev. B 96, 041120(R) (2017).

    ADS 

    Google Scholar
     

  • 35.

    Alidoust, N. et al. A new form of (unexpected) Dirac fermions in the strongly-correlated cerium monopnictides. arXiv:1604.08571 (2016).

  • 36.

    Kuroda, K. et al. Experimental determination of the topological phase diagram in cerium monopnictides. Phys. Rev. Lett. 120, 086402 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 37.

    Ye, L., Suzuki, T., Wicker, C. R. & Checkelsky, J. G. Extreme magnetoresistance in magnetic rare-earth monopnictides. Phys. Rev. B 97, 081108 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 38.

    Neupane, M. et al. Observation of Dirac-like semi-metallic phase in NdSb. J. Phys. Cond. Mater. 28, 23LT02 (2016).


    Google Scholar
     

  • 39.

    Busch, G. & Vogt, O. Magnetic anisotropies in antiferromagnetic rare earth antimonide single crystals. J. Appl. Phys. 39, 1334 (1968).

    ADS 
    CAS 

    Google Scholar
     

  • 40.

    Child, H. R., Wilkinson, M. K., Cable, J. W., Koehler, W. C. & Wollan, E. O. Neutron diffraction investigation of the magnetic properties of compounds of rare-earth metals with group v anions. Phys. Rev. 131, 922 (1963).

    ADS 
    CAS 

    Google Scholar
     

  • 41.

    Wang, Y.-Y., Sun, L.-L., Xu, S., Su, Y. & Xia, T.-L. Unusual magnetotransport in holmium monoantimonide. Phys. Rev. B 98, 045137 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 42.

    Kulshrestha, S., Rana, P., Singh, S. K. & Gupta, D. C. Electronic and thermal properties of HoSb under pressure: a LSDA+U study. AIP Conf. Proc. 1349, 797 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • 43.

    Canfield, P. C. & Fisk, Z. Growth of single crystals from metallic fluxes. Phil. Mag. B 65, 1117 (1992).

    ADS 
    CAS 

    Google Scholar
     

  • 44.

    Yu, R., Qi, X. L., Bernevig, A., Fang, Z. & Dai, X. Equivalent expression of (mathbf{Z}_2) topological invariant for band insulators using the non-Abelian Berry connection. Phys. Rev. B 84, 075119 (2011).

    ADS 

    Google Scholar
     

  • 45.

    Guo, P.-J., Yang, H.-C., Zhang, B.-J., Liu, K. & Lu, Z.-Y. Charge compensation in extremely large magnetoresistance materials LaSb and LaBi revealed by first-principles calculations. Phys. Rev. B 93, 235142 (2016).

    ADS 

    Google Scholar
     

  • 46.

    Brun, T. O., Korty, F. W. & Kouvel, J. S. Quadropolar interactions and the magnetic states of HoSb. J. Magn. Magn. Mater. 15, 298 (1980).

    ADS 

    Google Scholar
     

  • 47.

    Tafti, F. F., Gibson, Q. D., Kushwaha, S. K., Haldolaarachchige, N. & Cava, R. J. Resistivity plateau and extreme magnetoresistance in LaSb. Nat. Phys. 12, 272 (2016).

    CAS 

    Google Scholar
     

  • 48.

    Shekhar, C. et al. Extremely large magnetoresistance and ultrahigh mobility in the topological Weyl semimetal candidate NbP. Nat. Phys. 11, 645 (2015).

    CAS 

    Google Scholar
     

  • 49.

    Leahy, I. A. et al. Nonsaturating large magnetoresistance in semimetals. PNAS 10, 1073 (2018).


    Google Scholar
     

  • 50.

    Kuroda, K. et al. Devils staircase transition of the electronic structures in CeSb. Nat. Commun. 11, 2888 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).

    ADS 

    Google Scholar
     

  • 52.

    Kresse, G. & Hafner, j. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558 (1993).

    ADS 
    CAS 

    Google Scholar
     

  • 53.

    Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. J. Comput. Mater. Sci. 6, 15 (1996).

    CAS 

    Google Scholar
     

  • 54.

    Sun, J., Ruzsinszky, A. & Perdew, J. P. Strongly constrained and appropriately normed semilocal density functional. Phys. Rev. Lett. 115, 036402 (2015).

    ADS 
    PubMed 

    Google Scholar
     

  • 55.

    Mostofi, A. A. et al. An updated version of wannier90: a tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 185, 2309 (2014).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • 56.

    Wu, Q., Zhang, S., Song, H.-F., Troyer, M. & Soluyanov, A. A. Comput. Phys. Commun. 224, 405 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 57.

    Lopez Sancho, M. . P., Lopez Sancho, J. . M. . & Rubio, J. . Quick iterative scheme for the calculation of transfer matrices: application to MO(100). J. Phys. F Met. Phys. 14, 1205 (1984).

    ADS 
    CAS 

    Google Scholar
     

  • 58.

    Lopez Sancho, M. P., Lopez Sancho, J. . M. . & Rubio, J. Highly convergent schemes for the calculation of bulk and surface Green functions. J. Phys. F Met. Phys. 15, 851 (1985).

    ADS 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *