CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Broadfoot, A. et al. Extreme Ultraviolet Observations from Voyager 1 Encounter with Saturn. Science 212, 206–211 (1981).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Hanel, R. et al. Infrared Observations of the Saturnian System from Voyager 1. Science 212, 192–200 (1981).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Kunde, V. et al. C4H2, HC3N and C2N2 in Titan’s atmosphere. Nature 292, 686–688 (1981).

    ADS 
    CAS 

    Google Scholar
     

  • 4.

    Lindal, G. F. et al. The Atmosphere of Titan: An Analysis of the Voyager 1 Radio Occultation Measurements. Icarus 53, 348–363 (1983).

    ADS 
    CAS 

    Google Scholar
     

  • 5.

    Hayes, A. G. The Lakes and Seas of Titan. Annu. Rev. Earth Planet. Sci. 44, 57–83 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • 6.

    Lorenz, R. D. The Flushing of Ligeia: Composition Variations across Titan’s Seas in a Simple Hydrological Model. Geophys. Res. Lett. 41, 5764–5770 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 7.

    Hörst, S. M., Vuitton, V. & Yelle, R. V. Origin of Oxygen Species in Titan’s Atmosphere. J. Geophys. Res. Planets 113 (2008).

  • 8.

    Lavvas, P. et al. Aerosol Growth in Titan’s Ionosphere. Proc. Natl. Acad. Sci. 110, 2729–2734 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Li, C., Zhang, X., Gao, P. & Yung, Y. Vertical Distribution of C3-Hydrocarbons in the Stratosphere of Titan. The Astrophys. J. Lett. 803, L19 (2015).

    ADS 

    Google Scholar
     

  • 10.

    Yelle, R. V. et al. Formation of NH3 and CH2NH in Titan’s Upper Atmosphere. Faraday discussions 147, 31–49 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Krasnopolsky, V. A. Titan’s Photochemical Model: Further Update, Oxygen Species, and Comparison with Triton and Pluto. Planet. Space Sci. 73, 318–326 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • 12.

    Westlake, J. et al. Titan’s Ionospheric Composition and Structure: Photochemical Modeling of Cassini INMS Data. J. Geophys. Res. Planets 117 (2012).

  • 13.

    Hébrard, E. et al. Photochemistry of C3Hp Hydrocarbons in Titan’s Stratosphere Revisited. Astron. & Astrophys. 552, A132 (2013).


    Google Scholar
     

  • 14.

    Dobrijevic, M., Loison, J., Hickson, K. & Gronoff, G. 1D-Coupled Photochemical Model of Neutrals, Cations and Anions in the Atmosphere of Titan. Icarus 268, 313–339 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • 15.

    Vuitton, V., Yelle, R., Klippenstein, S., Hörst, S. & Lavvas, P. Simulating the Density of Organic Species in the Atmosphere of Titan with a Coupled Ion-Neutral Photochemical Model. Icarus 324, 120–197 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 16.

    Loison, J., Dobrijevic, M. & Hickson, K. The Photochemical Production of Aromatics in the Atmosphere of Titan. Icarus 329, 55–71 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 17.

    Plessis, S., Carrasco, N., Dobrijevic, M. & Pernot, P. Production of neutral species in Titan’s ionosphere through dissociative recombination of ions. Icarus 219, 254–266 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • 18.

    Lorenz, R. & Mitton, J. Titan Unveiled: Saturn’s Mysterious Moon Explored (Princeton University Press, 2010).

  • 19.

    Lorenz, R. D. et al. Dragonfly: A Rotorcraft Lander Concept for Scientific Exploration at Titan. Johns Hopkins APL Tech. Dig. 34, 14 (2018).


    Google Scholar
     

  • 20.

    Hörst, S. M. Titan’s Atmosphere and Climate. J. Geophys. Res. Planets 122, 432–482 (2017).

    ADS 

    Google Scholar
     

  • 21.

    Waite, J. et al. The Process of Tholin Formation in Titan’s Upper Atmosphere. Science 316, 870–875 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 22.

    Sciamma-O’Brien, E., Carrasco, N., Szopa, C., Buch, A. & Cernogora, G. Titan’s atmosphere: An optimal gas mixture for aerosol production? Icarus 209, 704–714 (2010).

    ADS 

    Google Scholar
     

  • 23.

    Hörst, S. M. & Tolbert, M. A. The effect of carbon monoxide on planetary haze formation. The Astrophys. J. 781, 53 (2014).

    ADS 

    Google Scholar
     

  • 24.

    Tran, B. N., Ferris, J. P. & Chera, J. J. The photochemical formation of a Titan haze analog. Structural analysis by X-ray photoelectron and infrared spectroscopy. Icarus 162, 114–124 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • 25.

    Trainer, M. G. et al. Organic haze on Titan and the early Earth. Proc. Natl. Acad. Sci. 103, 18035–18042 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Coll, P. et al. Can Laboratory Tholins Mimic the Chemistry Producing Titan’s Aerosols? A Review in Light of ACP Experimental Results. Planet. Space Sci. 77, 91–103 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • 27.

    Lavvas, P. et al. Energy deposition and primary chemical products in Titan’s upper atmosphere. Icarus 213, 233–251 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • 28.

    Yoon, Y. H. et al. The role of benzene photolysis in Titan haze formation. Icarus 233, 233–241 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 29.

    Sebree, J. A., Trainer, M. G., Loeffler, M. J. & Anderson, C. M. Titan aerosol analog absorption features produced from aromatics in the far infrared. Icarus 236, 146–152 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 30.

    Cable, M. et al. Identification of primary amines in Titan tholins using microchip nonaqueous capillary electrophoresis. Earth Planet. Sci. Lett. 403, 99–107 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 31.

    Hörst, S. M. et al. Laboratory Investigations of Titan Haze Formation: In Situ Measurement of Gas and Particle Composition. Icarus 301, 136–151 (2018).

    ADS 

    Google Scholar
     

  • 32.

    Fujii, T. & Arai, N. Analysis of N-containing hydrocarbon species produced by a CH4/N2 microwave discharge: Simulation of Titan’s atmosphere. The Astrophys. J. 519, 858 (1999).

    ADS 
    CAS 

    Google Scholar
     

  • 33.

    Imanaka, H. & Smith, M. A. Role of photoionization in the formation of complex organic molecules in Titan’s upper atmosphere. Geophys. research letters 34 (2007).

  • 34.

    Trainer, M. G., Jimenez, J. L., Yung, Y. L., Toon, O. B. & Tolbert, M. A. Nitrogen incorporation in CH4-N2 photochemical aerosol produced by far ultraviolet irradiation. Astrobiology 12, 315–326 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Imanaka, H. & Smith, M. A. EUV photochemical production of unsaturated hydrocarbons: Implications to EUV photochemistry in Titan and Jovian planets. The. J. Phys. Chem. A 113, 11187–11194 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Imanaka, H. & Smith, M. A. Formation of nitrogenated organic aerosols in the Titan upper atmosphere. Proc. Natl. Acad. Sci. 107, 12423–12428 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 37.

    Nahon, L. et al. DESIRS: a state-of-the-art VUV beamline featuring high resolution and variable polarization for spectroscopy and dichroism at SOLEIL. J. synchrotron radiation 19, 508–520 (2012).

    CAS 

    Google Scholar
     

  • 38.

    Peng, Z. et al. Titan’s atmosphere simulation experiment using continuum UV-VUV synchrotron radiation. J. Geophys. Res. Planets 118, 778–788 (2013).

    ADS 

    Google Scholar
     

  • 39.

    McPherson, A. et al. Studies of multiphoton production of vacuum-ultraviolet radiation in the rare gases. JOSA B 4, 595–601 (1987).

    ADS 
    CAS 

    Google Scholar
     

  • 40.

    Ferray, M. et al. Multiple-harmonic conversion of 1064 nm radiation in rare gases. J. Phys. B: At. Mol. Opt. Phys. 21, L31 (1988).

    CAS 

    Google Scholar
     

  • 41.

    Comby, A. et al. Cascaded harmonic generation from a fiber laser: a milliwatt XUV source. Opt. express 27, 20383–20396 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Johnson, A. S. et al. High-Flux Soft X-Ray Harmonic Generation from Ionization-Shaped Few-Cycle Laser Pulses. Sci. advances 4, eaar3761 (2018).

    ADS 

    Google Scholar
     

  • 43.

    Somogyi, A., Oh, C.-H., Smith, M. A. & Lunine, J. I. Organic environments on Saturn’s moon, Titan: Simulating chemical reactions and analyzing products by FT-ICR and ion-trap mass spectrometry. J. Am. Soc. for Mass Spectrom. 16, 850–859 (2005).

    CAS 

    Google Scholar
     

  • 44.

    Pilling, S., Andrade, D. P., Neto, A. C., Rittner, R. & Naves de Brito, A. DNA nucleobase synthesis at Titan atmosphere analog by soft X-rays. The J. Phys. Chem. A 113, 11161–11166 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Sebree, J. A., Stern, J. C., Mandt, K. E., Domagal-Goldman, S. D. & Trainer, M. G. 13C and 15N fractionation of CH4/N2 mixtures during photochemical aerosol formation: Relevance to Titan. Icarus 270, 421–428 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • 46.

    Gautier, T. et al. Influence of trace aromatics on the chemical growth mechanisms of Titan aerosol analogues. Planet. Space Sci. 140, 27–34 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 47.

    Gautier, T., Trainer, M. G., Loeffler, M. J., Sebree, J. A. & Anderson, C. M. Environmental temperature effect on the far-infrared absorption features of aromatic-based Titan’s aerosol analogs. Icarus 281, 338–341 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 48.

    Heays, A., Bosman, V. A. D. & Van Dishoeck, E. Photodissociation and photoionisation of atoms and molecules of astrophysical interest. Astron. & Astrophys. 602, A105 (2017).


    Google Scholar
     

  • 49.

    Canosa, A., Sims, I. R., Travers, D., Smith, I. W. & Rowe, B. Reactions of the methylidine radical with CH4, C2H2, C2H4, C2H6, and but-1-ene studied between 23 and 295 K with a CRESU apparatus. Astron. Astrophys. 323, 644–651 (1997).

    ADS 
    CAS 

    Google Scholar
     

  • 50.

    Atkinson, R. et al. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume II – Gaz phase reactions of organic species. Atmos. Chem. Phys. 6, 3625–4055, https://doi.org/10.5194/acp-6-3625-2006 (2006).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 51.

    Hebrard, E. et al. How measurements of rate coefficients at low temperature increase the predictivity of photochemical models of Titan’s atmosphere. J. Phys. Chem. A 113, 11227–11237, https://doi.org/10.1021/jp905524e (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 52.

    Baulch, D. L. et al. Evaluated kinetic data for combustion modeling. J. Phys. Chem. Ref. Data 34(Supplement II), 757–1397, https://doi.org/10.1063/1.1748524 (2005).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 53.

    Cohen, N. & Westberg, K. Chemical kinetic data sheets for high-temperature reactions. Part II. J. Phys. Chem. Ref. Data 20, 1211–1311 (1991).

    ADS 
    CAS 

    Google Scholar
     

  • 54.

    Daranlot, J. et al. Revealing Atom-Radical Reactivity at Low Temperature Through the N + OH Reaction. Science 334, 1538, https://doi.org/10.1126/science.1213789 (2011).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 55.

    Hickson, K., Loison, J.-C. & Caubet, P. Unusual Low Temperature Reactivity of Water. The CH H2O Reaction as a Source of Interstellar Formaldehyde? J. Phys. Chem. Lett. 4, 2843, https://doi.org/10.1021/jz401425f (2013).

    CAS 
    Article 

    Google Scholar
     

  • 56.

    Hickson, K. M., Wakelam, V. & Loison, J.-C. Methylacetylene (CH3CCH) and propene (C3H6) formation in cold dense clouds: A case of dust grain chemistry. Mol. Astrophys. 3, 1–9, https://doi.org/10.1016/j.molap.2016.03.001 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 57.

    Loison, J.-C. et al. The interstellar chemistry of c3h and c3h2 isomers. Mon. Notices Royal Astron. Soc. 470, 4075–4088 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 58.

    Anicich, V. G. Evaluated bimolecular ion-molecule gas phase kinetics of positive ions for use in modeling planetary atmospheres, cometary comae, and interstellar clouds. J. Phys. Chem. Ref. Data 22, 1469–1569 (1993).

    ADS 
    CAS 

    Google Scholar
     

  • 59.

    Loison, J.-C., Wakelam, V. & Hickson, K. The interstellar gas-phase chemistry of HCN and HNC. Mon. Notices The Royal Astron. Soc. 443, 398–410, https://doi.org/10.1093/mnras/stu1089 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 60.

    Anicich, V. G. An index of the literature for bimolecular gas phase cation-molecule reaction kinetics. JPL Publ. 03-19, 1–1194 (2003).


    Google Scholar
     

  • 61.

    Woon, D. E. & Herbst, E. Quantum Chemical Predictions of the Properties of Known and Postulated Neutral Interstellar Molecules. Astrophys. J. Suppl. Ser. 185, 273–288, https://doi.org/10.1088/0067-0049/185/2/273 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 62.

    Plessis, S., Carrasco, N. & Pernot, P. Knowledge-based probabilistic representations of branching ratios in chemical network: The case of dissociative recombinations. J. Chem. Phys. 133, 134110, https://doi.org/10.1063/1.3479907 (2010).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 63.

    Torokova, L., Mazankova, V., Krcma, F., Mason, N. J. & Matejcik, S. Atmospheric pressure glow discharge generated in nitrogen-methane gas mixture: PTR-MS analyzes of the exhaust gas. The Eur. Phys. J. Appl. Phys. 71, 20806 (2015).

    ADS 

    Google Scholar
     

  • 64.

    Gautier, T., Serigano, J., Bourgalais, J., Hörst, S. M. & Trainer, M. G. Decomposition of electron ionization mass spectra for space application using a Monte-Carlo approach. Rapid Commun. Mass Spectrom. 34, e8684 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 65.

    Wilson, E. H. & Atreya, S. Current state of modeling the photochemistry of Titan’s mutually dependent atmosphere and ionosphere. J. Geophys. Res. Planets 109 (2004).

  • 66.

    Waite, J. H. et al. Ion neutral mass spectrometer results from the first flyby of Titan. Science 308, 982–986 (2005).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 67.

    Coll, P., Coscia, D., Gazeau, M.-C., Guez, L. & Raulin, F. Review and Latest Results of Laboratory Investigations of Titan’s Aerosols. Orig. Life Evol. Biosphere 28, 195–213 (1998).

    ADS 
    CAS 

    Google Scholar
     

  • 68.

    Tanguy, L. et al. Stratospheric profile of HCN on Titan from millimeter observations. Icarus 85, 43–57 (1990).

    ADS 
    CAS 

    Google Scholar
     

  • 69.

    Gautier, T. et al. Nitrile gas chemistry in Titan’s atmosphere. Icarus 213, 625–635 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • 70.

    He, C. & Smith, M. A. Identification of nitrogenous organic species in Titan aerosols analogs: Nitrogen fixation routes in early atmospheres. Icarus 226, 33–40 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • 71.

    He, C. & Smith, M. A. A comprehensive NMR structural study of Titan aerosol analogs: implications for Titan’s atmospheric chemistry. Icarus 243, 31–38 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 72.

    Cunha de Miranda, B. et al. Molecular isomer identification of Titan’s tholins organic aerosols by photoelectron/photoion coincidence spectroscopy coupled to VUV synchrotron radiation. The J. Phys. Chem. A 120, 6529–6540 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 73.

    Dubois, D. et al. Nitrogen-containing Anions and Tholin Growth in Titan’s Ionosphere: Implications for Cassini CAPS-ELS Observations. The Astrophys. J. Lett. 872, L31 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 74.

    Bourgalais, J., Carrasco, N., Vettier, L. & Pernot, P. Low-Pressure EUV Photochemical Experiments: Insight on the Ion Chemistry Occurring in Titan’s Atmosphere. J. Geophys. Res. Space Phys. (2019).

  • 75.

    Dubois, D. et al. In situ investigation of neutrals involved in the formation of Titan tholins. Icarus 317, 182–196 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 76.

    Israël, G. et al. Complex organic matter in Titan’s atmospheric aerosols from in situ pyrolysis and analysis. Nature 438, 796–799 (2005).

    ADS 
    PubMed 

    Google Scholar
     

  • 77.

    Hunter, W., Angel, D. & Tousey, R. Thin films and their uses for the extreme ultraviolet. Appl. Opt. 4, 891–898 (1965).

    ADS 
    CAS 

    Google Scholar
     

  • 78.

    Henneck, R., Bjoerknaes, K. & Jelinsky, S. R. Transmission of thin indium filters in the EUV and lifetime tests. In EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy VIII, vol. 3114, 648–651 (International Society for Optics and Photonics, 1997).

  • 79.

    Smardzewski, R. R. Windowless Vacuum-Ultraviolet Matrix Photolysis. Appl. Spectrosc. 31, 332–334 (1977).

    ADS 
    CAS 

    Google Scholar
     

  • 80.

    Sebree, J. A., Wayson, J. M. & Lopez, J. R. Variation in photon flux during extended photochemical aerosol experiments: Implications for atmospheric laboratory simulations. J. Photochem. Photobiol. A: Chem. 360, 1–5 (2018).

    CAS 

    Google Scholar
     

  • 81.

    Hörst, S. & Tolbert, M. A. In situ measurements of the size and density of Titan aerosol analogs. The Astrophys. J. Lett. 770, L10 (2013).

    ADS 

    Google Scholar
     

  • 82.

    Imanaka, H. et al. Laboratory experiments of Titan tholin formed in cold plasma at various pressures: implications for nitrogen-containing polycyclic aromatic compounds in Titan haze. Icarus 168, 344–366 (2004).

    ADS 
    CAS 

    Google Scholar
     

  • 83.

    Khare, B. et al. Optical constants of organic tholins produced in a simulated Titanian atmosphere: From soft X-ray to microwave frequencies. Icarus 60, 127–137 (1984).

    ADS 
    CAS 

    Google Scholar
     

  • 84.

    Khare, B. N. et al. Amino acids derived from Titan tholins. Icarus 68, 176–184 (1986).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 85.

    Coll, P. et al. Organic chemistry in Titan’s atmosphere: new data from laboratory simulations at low temperature. Adv. Space Res. 16, 93–103 (1995).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 86.

    McKay, C. P. Elemental composition, solubility, and optical properties of Titan’s organic haze. Planet. Space Sci. 44, 741–747 (1996).

    ADS 
    CAS 

    Google Scholar
     

  • 87.

    Khare, B. N. et al. Analysis of the time-dependent chemical evolution of Titan haze tholin. Icarus 160, 172–182 (2002).

    ADS 
    CAS 

    Google Scholar
     

  • 88.

    Roush, T. & Dalton, J. Reflectance spectra of hydrated Titan tholins at cryogenic temperatures and implications for compositional interpretation of red objects in the outer Solar System. Icarus 168, 158–162 (2004).

    ADS 
    CAS 

    Google Scholar
     

  • 89.

    McGuigan, M., Waite, J. H., Imanaka, H. & Sacks, R. D. Analysis of Titan tholin pyrolysis products by comprehensive two-dimensional gas chromatography–time-of-flight mass spectrometry. J. chromatography A 1132, 280–288 (2006).

    CAS 

    Google Scholar
     

  • 90.

    Bernard, J.-M. et al. Reflectance spectra and chemical structure of Titan’s tholins: Application to the analysis of Cassini–Huygens observations. Icarus 185, 301–307 (2006).

    ADS 
    CAS 

    Google Scholar
     

  • 91.

    Ramírez, S. et al. The fate of aerosols on the surface of Titan. Faraday discussions 147, 419–427 (2010).

    ADS 
    PubMed 

    Google Scholar
     

  • 92.

    Poch, O., Coll, P., Buch, A., Ramírez, S. & Raulin, F. Production yields of organics of astrobiological interest from H2O–NH3 hydrolysis of Titan’s tholins. Planet. Space Sci. 61, 114–123 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • 93.

    Raulin, F., Dubouloz, N. & Frere, C. Prebiotic-like organic syntheses in extraterrestrial environments: The case of Titan. Adv. Space Res. 9, 35–47 (1989).

    ADS 
    CAS 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *