CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Spagnoli, A. A., Giannakoudakis, D. A. & Bashkova, S. Adsorption of methylene blue on cashew nut shell based carbons activated with zinc chloride: The role of surface and structural parameters. J. Mol. Liq. 229, 465–471 (2017).

    CAS 

    Google Scholar
     

  • 2.

    Ali, I., Alothman, Z. A. & Alharbi, O. M. L. Supra molecular mechanism of the removal of 17-β-estradiol endocrine disturbing pollutant from water on functionalized iron nano particles. J. Mol. Liq. 441, 123–129 (2017).


    Google Scholar
     

  • 3.

    Ali, I. et al. Artificial neural network modelling of amido black dye sorption on iron composite nano material: Kinetics and thermodynamics studies. J. Mol. Liq. 250, 1–8 (2018).

    CAS 

    Google Scholar
     

  • 4.

    Ali, I. New generation nano-adsorbents for the removal of emerging contaminants in water. J. Mol. Liq. 261, 583–593 (2018).


    Google Scholar
     

  • 5.

    Alharbi, O. M. L. et al. Health and environmental effects of persistent organic pollutants. J. Mol. Liq. 263, 442–453 (2018).

    CAS 

    Google Scholar
     

  • 6.

    Burakova, E. A. et al. Novel and economic method of carbon nanotubes synthesis on a nickel magnesium oxide catalyst using microwave radiation. J. Mol. Liq. 253, 340–346 (2018).

    CAS 

    Google Scholar
     

  • 7.

    Basheer, A. A. & Ali, I. Stereoselective uptake and degradation of (±)-o, p-DDD pesticide stereomers in water sediment system. Chirality 30, 1088–1095 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Basheer, A. A. Chemical chiral pollution: Impact on the society and science and need of the regulations in the 21st century. Chirality 30, 402–406 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Popa, N. & Visa, M. The synthesis, activation and characterization of charcoal powder for the removal of methylene blue and cadmium from wastewater. Adv. Powder Technol. 28, 1866–1876 (2017).

    CAS 

    Google Scholar
     

  • 10.

    Ali, I. Microwave assisted economic synthesis of multi walled carbon nanotubes for arsenic species removal in water, batch and column operations. J. Mol. Liq 271, 677–685 (2018).

    CAS 

    Google Scholar
     

  • 11.

    Ali, I. et al. Water treatment by new generation graphene materials. Hope for Bright Future. Environ. Sci. Pollut. Res 25, 7315–7329 (2018).

    CAS 

    Google Scholar
     

  • 12.

    Ali, I. et al. Modeling of fenuron pesticide adsorption on CNTs for mechanistic insight and removal in water. Environ. Res. 170, 389–397 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Ali, I. et al. Graphene based adsorbents for remediation of noxious pollutants from wastewater. Environ. Int. 127, 160–180 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 14.

    Ali, I. et al. Water treatment by new-generation graphene materials: Hope for bright future. Environ. Sci. Pollut. Res. 25, 7315–7329 (2018).

    CAS 

    Google Scholar
     

  • 15.

    Ali, I. et al. Facile and eco-friendly synthesis of functionalized iron nanoparticles for cyanazine removal in water. Colloids Surf. B 171, 606–613 (2018).

    CAS 

    Google Scholar
     

  • 16.

    Shakoor, S. & Nasar, A. Removal of methylene blue dye from artificially contaminated water using citrus limetta peel waste as a very low cost adsorbent. J. Taiwan Inst. Chem. E 66, 154–163 (2016).

    CAS 

    Google Scholar
     

  • 17.

    Chen, L. et al. Removal of methylene blue from water by cellulose/grapheme oxide fibres. J. Exp. Nanosci. 11, 1156–1170 (2016).

    CAS 

    Google Scholar
     

  • 18.

    Tamilselvi, S., Asaithambi, M. & Sivakumar, V. An eco-friendly non-conventional adsorbent from silk cotton fiber for the removal of methylene blue dye, Indian. J. Chem. Technol. 23, 497–505 (2016).


    Google Scholar
     

  • 19.

    Ali, I. et al. Preparation of a carboxymethylcellulose-iron composite for uptake of atorvastatin in water. Int. J. Biol. Macromol. 132, 244–253 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Al-Shaalan, N. H. et al. High performance removal and simulation studies of diuron pesticide in water on MWCNTs. J. Mol. Liq. 289, 111039 (2019).

    CAS 

    Google Scholar
     

  • 21.

    Ali, I. et al. Removal of copper(II) and zinc(II) ions in water on a newly synthesized polyhydroquinone/graphene nanocomposite material: Kinetics, thermodynamics and mechanism. ChemistrySelect 4, 12708–12718 (2019).

    CAS 

    Google Scholar
     

  • 22.

    Kallel, F. et al. Sorption and desorption characteristics for the removal of a toxic dye, methylene blue from aqueous solution by a low cost agricultural by-product. J. Mol. Liq. 219, 279–288 (2016).

    CAS 

    Google Scholar
     

  • 23.

    Bharathi, K. S. & Ramesh, S. T. Removal of dyes using agricultural waste as low-cost adsorbents: A review. Appl. Water Sci. 3, 773–790 (2013).

    ADS 

    Google Scholar
     

  • 24.

    Oyelude, E. O. & Owusu, U. R. Adsorption of methylene blue from aqueous solution using acid modified Calotropis procera leaf powder. J. Appl. Sci. Environ. Sanitation 6, 477–484 (2011).

    CAS 

    Google Scholar
     

  • 25.

    Yao, S., Lai, H. & Shi, Z. Adsorption of methylene blue from aqueous solution using acetic acid modified rice bran. J. Indian Chem. Soc. 90, 629–635 (2013).

    CAS 

    Google Scholar
     

  • 26.

    Liu, X. et al. Characterization of corncob-derived biochar and pyrolysis kinetics in comparison with corn stalk and sawdust. Bioresour. Technol. 170, 76–82 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Ma, H. et al. Novel synthesis of a versatile magnetic adsorbent derived from corncob for dye removal. Bioresour. Technol. 190, 13–20 (2017).


    Google Scholar
     

  • 28.

    Huang, Y. X. & Keller, A. A. Magnetic nanoparticle adsorbents for emerging organic contaminants. ACS Sustain. Chem. Eng. 1, 731–736 (2013).

    CAS 

    Google Scholar
     

  • 29.

    Mohan, D. et al. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent-a critical review. Bioresour. Technol. 160, 191–202 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Rajapaksha, A. U. et al. Engineered/designer biochar for contaminant removal/immobilization from soil and water: Potential and implication of biochar modifica-tion. Chemosphere 148, 276–291 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Cho, H. H. et al. Sorption of aqueous Zn[II] and Cd[II] by multiwall carbon nanotubes: The relative roles of oxygen-containing functional groups and graphenic carbon. Langmuir 26, 967–981 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Uchimiya, M., Chang, S. & Klasson, K. T. Screening biochars for heavy metal retention in soil: Role of oxygen functional groups. J. Hazard Mater. 190, 432–441 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 33.

    Fang, Q. et al. Aromatic and hydrophobic surfaces of wood-derived biochar enhance perchlorate adsorption via hydrogen bonding to oxygen-containing organic groups. Environ. Sci. Technol. 48, 279–288 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Abdel Hakim, A. A., Nassar, M. & Emam, A. Preparation and characterization of rigid polyurethane foam prepared from sugar-cane bagasse polyol. Mater. Chem. Phys. 129, 301–307 (2011).

    CAS 

    Google Scholar
     

  • 35.

    Ge, M. L. et al. A maleic anhydride grafted sugarcane bagasse adsorbent and its performance on the removal of methylene blue from related wastewater. Mater. Chem. Phys. 192, 147–155 (2017).

    CAS 

    Google Scholar
     

  • 36.

    Xu, Y. et al. Enhanced adsorption of methylene blue by citric acid modification of biochar derived from water hyacinth (Eichornia crassipes). Environ. Sci. Pollut. Res. Int. 23, 23606–23618 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 37.

    Zhen, M. et al. Decontamination of methylene blue from aqueous solution by rhamnolipid-modified biochar. BioResources 13, 3061–3081 (2018).

    CAS 

    Google Scholar
     

  • 38.

    Liu, W. J. et al. Facile synthesis of highly efficient and recyclable magnetic solid acid from biomass waste. Sci. Rep. 3, 2419–2424 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Ren, C. R. et al. Highly efficient adsorption of heavy metals onto novel magnetic porous composites modified with amino groups. J. Chem. Eng. Data 62, 1865–1875 (2017).

    CAS 

    Google Scholar
     

  • 40.

    Fechler, N. et al. Salt and sugar: Direct synthesis of high surface area carbon materials at low temperatures via hydrothermal carbonization of glucose under hypersaline conditions. J. Math. Chem. A 1, 9418–9421 (2013).

    CAS 

    Google Scholar
     

  • 41.

    Calucci, L., Rasse, D. P. & Forte, C. Solid-state nuclear magnetic resonance characterization of chars obtained from hydrothermal carbonization of corncob and miscanthus. Energy Fuels 27, 303–309 (2013).

    CAS 

    Google Scholar
     

  • 42.

    Ma, H. J. Hydrothermal preparation and characterization of novel corncob-derived solid acid catalysts. J. Agric. Food Chem. 62, 5345–5353 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 43.

    Foo, K. Y. & Hameed, B. H. Potential of jackfruit peel as precursor for activated carbon prepared by microwave induced NaOH activation. Bioresour. Technol. 112, 143–150 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Zhou, X. P. & Xie, X. L. Study on PP/PMMA grafted sisal fiber composited(II) effect of surface treatment on the structure and properties of sisal fiber-reinforced polypropylene composites. J. Polym. Mater. Sci. Eng. 20, 138–141 (2004).


    Google Scholar
     

  • 45.

    Bhatti, H. N., Akhtar, N. & Saleem, N. Adsorptive removal of methylene blue by low-cost citrus Sinensis bagasse: Equilibrium, kinetic and thermodynamic characterization. Arab. J. Sci. Eng. 37, 9–18 (2012).

    CAS 

    Google Scholar
     

  • 46.

    Wang, Y. X. et al. Cellulose-based porous adsorbents with high capacity for methylene blue adsorption from aqueous solutions. Fiber Polym. 18, 891–899 (2017).

    CAS 

    Google Scholar
     

  • 47.

    Sharmeen Afroze, S. et al. Adsorption performance of continuous fixed bed column for the removal of methylene blue (MB) dye using Eucalyptus sheathiana bark biomass. Res. Chem. Intermed 42, 2343–2364 (2016).


    Google Scholar
     

  • 48.

    Kamaru, A. A. et al. Raw and surfactant-modified pineapple leaf as adsorbent for removal of methylene blue and methyl orange from aqueous solution. Desalin. Water Treat. 57, 18836–18850 (2016).

    CAS 

    Google Scholar
     

  • 49.

    Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40, 1361 (1918).

    CAS 

    Google Scholar
     

  • 50.

    Freundlich, H. M. F. Over the adsorption in solution. J. Phys. Chem. 57, 385 (1906).

    CAS 

    Google Scholar
     

  • 51.

    Kumar, R., Sharma, R. K. & Singh, A. P. Cellulose based grafted biosorbents—Journey from lignocellulose biomass to toxic metal ions sorption applications—A review. J. Mol. Liq. 232, 62–93 (2017).

    CAS 

    Google Scholar
     

  • 52.

    Hameed, B. H., Krishni, R. R. & Sata, S. A. A novel agricultural waste adsorbent for the removal of cationic dye from aqueous solutions. J. Hazard Mater. 162, 305–311 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 53.

    Basar, C. A. Applicability of the various adsorption models of three dyes adsorption onto activated carbon prepared waste apricot. J. Hazard Mater. 135, 232–241 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 54.

    Lata, H., Grag, V. K. & Gupta, R. K. Removal of a basic dye from aqueous solution by adsorption using Parthenium hysterophorus: An agricultural waste. Dyes Pigm. 74, 653–658 (2007).

    CAS 

    Google Scholar
     

  • 55.

    Bouguettouchaa, A. D. et al. Novel activated carbon prepared from an agricultural waste, Stipa tenacissima, based on ZnCl2 activation-characterization and application to the removal of methylene blue. Desalin. Water Treat. 57, 24056–24069 (2016).


    Google Scholar
     

  • 56.

    Ma, D. Z. et al. Fabrication of the novel hydrogel based on waste corn stalk for removal of methylene blue dye from aqueous solution. Appl. Surf. Sci. 422, 944–952 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 57.

    Low, L. W. et al. Studies on the adsorption omethylene blue dye from aqueous solution onto low-cost tartaric acid treated Bagasse. Apcbee Procedia 1, 103–109 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • 58.

    Kamaru, A.A. et al. Raw and surfactant-modified pineapple leaf as adsorbent for removal of methylene blue and methyl orange from aqueous solution. Desalin. Water Treat. 59, 18836–18850 (2016).


    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *