CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING

[ad_1]

  • 1.

    Kivimäki, M. et al. Physical inactivity, cardiometabolic disease, and risk of dementia: An individual-participant meta-analysis. BMJ 365, l1495 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Kao, S.-C. et al. A systematic review of physical activity and cardiorespiratory fitness on P3b. Psychophysiology 20, e13425 (2019).


    Google Scholar
     

  • 3.

    Kramer, A. F. & Colcombe, S. Fitness effects on the cognitive function of older adults: A meta-analytic study—revisited. Perspect. Psychol. Sci. 13, 213–217 (2018).

    PubMed 

    Google Scholar
     

  • 4.

    Loprinzi, P. D., Frith, E., Edwards, M. K., Sng, E. & Ashpole, N. The effects of exercise on memory function among young to middle-aged adults: Systematic review and recommendations for future research. Am. J. Heal. Promot. 32, 691–704 (2018).


    Google Scholar
     

  • 5.

    Zwilling, C. E. et al. Enhanced decision-making through multimodal training. NPJ Sci. Learn. 4, 11 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Bruine de Bruin, W., Parker, A. M. & Fischhoff, B. Individual differences in adult decision-making competence. J. Pers. Soc. Psychol. 92, 938–956 (2007).

    PubMed 

    Google Scholar
     

  • 7.

    Villarroel, M., Blackwell, D. & Jen, A. Age-adjusted percent distributions (with standard errors) of participation in leisure-time aerobic and muscle-strengthening activities that meet the 2008 federal physical activity guidelines among adults aged 18 and over, by selected characteristics: Unit. Tables of Summary Health Statistics for U S Adults: 2018 National Health Interview Survey National Center for Health Statistics 2019 https://www.cdc.gov/nchs/nhis/shs/tables.htm (2019).

  • 8.

    Physical Activity Guidelines Advisory Committee. 2018 Physical Activity Guidelines Advisory Committee Scientific Report (U.S. Department of Health and Human Services, Washington, DC, 2018).


    Google Scholar
     

  • 9.

    Ku, P.-W., Liu, Y.-T., Lo, M.-K., Chen, L.-J. & Stubbs, B. Higher levels of objectively measured sedentary behavior is associated with worse cognitive ability: Two-year follow-up study in community-dwelling older adults. Exp. Gerontol. 99, 110–114 (2017).

    PubMed 

    Google Scholar
     

  • 10.

    Tremblay, M. S. et al. Sedentary behavior research network (SBRN)—Terminology Consensus Project process and outcome. Int. J. Behav. Nutr. Phys. Act. 14, 75 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    American College of Sports Medicine, Riebe, D., Ehrman, J. K., Liguori, G. & Magal, M. ACSM’s Guidelines for Exercise Testing and Prescription (Wolters Kluwer, Alphen aan den Rijn, 2018).


    Google Scholar
     

  • 12.

    Piercy, K. L. et al. The physical activity guidelines for Americans. JAMA 320, 2020 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Ekelund, U. et al. Does physical activity attenuate, or even eliminate, the detrimental association of sitting time with mortality? A harmonised meta-analysis of data from more than 1 million men and women. Lancet 388, 1302–1310 (2016).

    PubMed 

    Google Scholar
     

  • 14.

    Bakrania, K. et al. Associations between sedentary behaviors and cognitive function: Cross-sectional and prospective findings from the UK Biobank. Am. J. Epidemiol. 187, 441–454 (2018).

    PubMed 

    Google Scholar
     

  • 15.

    Colcombe, S. & Kramer, A. F. Fitness effects on the cognitive function of older adults: A meta-analytic study. Psychol. Sci. 14, 125–130 (2003).

    PubMed 

    Google Scholar
     

  • 16.

    Del Missier, F., Mäntylä, T. & Bruine de Bruin, W. Executive functions in decision making: An individual differences approach. Think. Reason. 16, 69–97 (2010).


    Google Scholar
     

  • 17.

    Román, F. J. et al. Cognitive and neural architecture of decision making competence. Neuroimage 199, 172–183 (2019).

    PubMed 

    Google Scholar
     

  • 18.

    Stillman, C. M. et al. Physical activity is associated with reduced implicit learning but enhanced relational memory and executive functioning in young adults. PLoS One 11, e0162100 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Bento-Torres, J. et al. Associations between cardiorespiratory fitness, physical activity, intraindividual variability in behavior, and cingulate cortex in younger adults. J. Sport Health Sci. 20, 20 (2019).


    Google Scholar
     

  • 20.

    Del Missier, F., Mäntylä, T. & Bruin, W. B. Decision-making competence, executive functioning, and general cognitive abilities. J. Behav. Decis. Mak. 25, 331–351 (2012).


    Google Scholar
     

  • 21.

    Evans, J. S. B. T. & Stanovich, K. E. Dual-process theories of higher cognition: Advancing the debate. Perspect. Psychol. Sci. 8, 223–241 (2013).

    PubMed 

    Google Scholar
     

  • 22.

    Cole, M. W., Yarkoni, T., Repovs, G., Anticevic, A. & Braver, T. S. Global connectivity of prefrontal cortex predicts cognitive control and intelligence. J. Neurosci. 32, 8988–8999 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    van den Heuvel, M. P., Stam, C. J., Kahn, R. S. & Hulshoff Pol, H. E. Efficiency of functional brain networks and intellectual performance. J. Neurosci. 29, 7619–7624 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Talukdar, T., Román, F. J., Operskalski, J. T., Zwilling, C. E. & Barbey, A. K. Individual differences in decision making competence revealed by multivariate fMRI. Hum. Brain Mapp. 39, 2664–2672 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Dosenbach, N. U. et al. Distinct brain networks for adaptive and stable task control in humans. Proc. Natl. Acad. Sci. USA 104, 11073–11078 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Barbey, A. K. Network neuroscience theory of human intelligence. Trends Cogn. Sci. 22, 8–20 (2018).

    PubMed 

    Google Scholar
     

  • 27.

    Harmelech, T. & Malach, R. Neurocognitive biases and the patterns of spontaneous correlations in the human cortex. Trends Cogn. Sci. 17, 606–615 (2013).

    PubMed 

    Google Scholar
     

  • 28.

    Vatansever, D., Menon, D. K., Manktelow, A. E., Sahakian, B. J. & Stamatakis, E. A. Default mode network connectivity during task execution. Neuroimage 122, 96–104 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 29.

    Fox, M. D., Corbetta, M., Snyder, A. Z., Vincent, J. L. & Raichle, M. E. Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc. Natl. Acad. Sci. USA 103, 10046–10051 (2006).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Corbetta, M. & Shulman, G. L. Control of goal-directed and stimulus-driven attention in the brain. Nat. Rev. Neurosci. 3, 201–215 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Greicius, M. D., Krasnow, B., Reiss, A. L. & Menon, V. Functional connectivity in the resting brain: A network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. USA 100, 253–258 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Hampson, M., Driesen, N. R., Skudlarski, P., Gore, J. C. & Constable, R. T. Brain connectivity related to working memory performance. J. Neurosci. 26, 13338–13343 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Craig, M. M., Manktelow, A. E., Sahakian, B. J., Menon, D. K. & Stamatakis, E. A. Spectral diversity in default mode network connectivity reflects behavioral state. J. Cogn. Neurosci. 30, 526–539 (2018).

    PubMed 

    Google Scholar
     

  • 34.

    Lin, J. et al. Associations between objectively measured physical activity and executive functioning in young adults. Percept. Mot. Ski. 125, 278–288 (2018).


    Google Scholar
     

  • 35.

    Zanto, T. P. & Gazzaley, A. Fronto-parietal network: Flexible hub of cognitive control. Trends Cogn. Sci. 17, 602–603 (2013).

    PubMed 

    Google Scholar
     

  • 36.

    Voss, M. W. et al. Plasticity of brain networks in a randomized intervention trial of exercise training in older adults. Front. Aging Neurosci. 2, 1–17 (2010).


    Google Scholar
     

  • 37.

    Talukdar, T. et al. Aerobic fitness explains individual differences in the functional brain connectome of healthy young adults. Cereb. Cortex 28, 3600–3609 (2018).

    PubMed 

    Google Scholar
     

  • 38.

    Burzynska, A. Z. et al. Physical activity is linked to greater moment-to-moment variability in spontaneous brain activity in older adults. PLoS One 10, e0134819 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Dencker, M. & Andersen, L. B. Accelerometer-measured daily physical activity related to aerobic fitness in children and adolescents. J. Sports Sci. 20, 37–41 (2011).


    Google Scholar
     

  • 40.

    Sarzynski, M. A., Ghosh, S. & Bouchard, C. Genomic and transcriptomic predictors of response levels to endurance exercise training. J. Physiol. 595, 2931–2939 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 41.

    Latora, V. & Marchiori, M. Efficient behavior of small-world networks. Phys. Rev. Lett. 87, 198701 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Bullmore, E. & Sporns, O. Complex brain networks: Graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 43.

    Rubinov, M. & Sporns, O. Complex network measures of brain connectivity: Uses and interpretations. Neuroimage 52, 1059–1069 (2010).


    Google Scholar
     

  • 44.

    Cao, M. et al. Topological organization of the human brain functional connectome across the lifespan. Dev. Cogn. Neurosci. 7, 76–93 (2014).

    PubMed 

    Google Scholar
     

  • 45.

    Marques, P. et al. The functional connectome of cognitive reserve. Hum. Brain Mapp. 37, 3310–3322 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Dimech, C. J., Anderson, J. A. E., Lockrow, A. W., Spreng, R. N. & Turner, G. R. Sex differences in the relationship between cardiorespiratory fitness and brain function in older adulthood. J. Appl. Physiol. 126, 1032–1041 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Kim, G. H. et al. Higher physical activity is associated with increased attentional network connectivity in the healthy elderly. Front. Aging Neurosci. 8, 198 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Kawagoe, T., Onoda, K. & Yamaguchi, S. Associations among executive function, cardiorespiratory fitness, and brain network properties in older adults. Sci. Rep. 7, 40107 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Prince, S. A. et al. A comparison of direct versus self-report measures for assessing physical activity in adults: A systematic review. Int. J. Behav. Nutr. Phys. Act. 5, 56 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Silva, A. M. et al. What is the effect of diet and/or exercise interventions on behavioural compensation in non-exercise physical activity and related energy expenditure of free-living adults? A systematic review. Br. J. Nutr. 119, 1327–1345 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    Prince, S. A., Saunders, T. J., Gresty, K. & Reid, R. D. A comparison of the effectiveness of physical activity and sedentary behaviour interventions in reducing sedentary time in adults: A systematic review and meta-analysis of controlled trials. Obes. Rev. 15, 905–919 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 52.

    Edwardson, C. L. et al. Association of sedentary behaviour with metabolic syndrome: A meta-analysis. PLoS One 7, e34916 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    Healy, G. N., Matthews, C. E., Dunstan, D. W. & Winkler, E. A. H. Sedentary time and cardio-metabolic biomarkers in US adults: NHANES 2003-06. Eur. Heart J. 32, 590–597 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Pandey, A. et al. Continuous dose-response association between sedentary time and risk for cardiovascular disease: A meta-analysis. JAMA Cardiol. 1, 575–583 (2016).

    PubMed 

    Google Scholar
     

  • 55.

    Patterson, R. et al. Sedentary behaviour and risk of all-cause, cardiovascular and cancer mortality, and incident type 2 diabetes: A systematic review and dose response meta-analysis. Eur. J. Epidemiol. 33, 811–829 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 56.

    Falck, R. S., Davis, J. C. & Liu-Ambrose, T. What is the association between sedentary behaviour and cognitive function? A systematic review. Br. J. Sports Med. 51, 800–811 (2017).

    PubMed 

    Google Scholar
     

  • 57.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).

    MathSciNet 
    MATH 

    Google Scholar
     

  • 58.

    Hayes, A. F. Methodology in the Social Sciences. Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach (Guilford Press, New York, 2013).


    Google Scholar
     

  • 59.

    Kesse-Guyot, E. et al. Cross-sectional and longitudinal associations of different sedentary behaviors with cognitive performance in older adults. PLoS One 7, e47831 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 60.

    Hamer, M. & Stamatakis, E. Prospective study of sedentary behavior, risk of depression, and cognitive impairment. Med. Sci. Sport. Exerc. 46, 718–723 (2014).


    Google Scholar
     

  • 61.

    Tun, P. A. & Lachman, M. E. The association between computer use and cognition across adulthood: Use it so you won’t lose it?. Psychol. Aging 25, 560–568 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 62.

    Yang, L. et al. Trends in sedentary behavior among the US population, 2001–2016. JAMA 321, 1587 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 63.

    Video Consumer Mapping Study: Key Findings Report. (Center for Media and Design, Ball State University, 2009).

  • 64.

    Small, G. W., Moody, T. D., Siddarth, P. & Bookheimer, S. Y. Your brain on Google: Patterns of cerebral activation during internet searching. Am. J. Geriatr. Psychiatry 17, 116–126 (2009).

    PubMed 

    Google Scholar
     

  • 65.

    Basten, U., Biele, G., Heekeren, H. R. & Fiebach, C. J. How the brain integrates costs and benefits during decision making. Proc. Natl. Acad. Sci. USA 107, 21767–21772 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 66.

    Tversky, A. & Kahneman, D. The framing of decisions and the psychology of choice. Science 211, 453–458 (1981).

    ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar
     

  • 67.

    Cole, M. W. et al. Multi-task connectivity reveals flexible hubs for adaptive task control. Nat. Neurosci. 16, 1348–1355 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 68.

    Van Calster, L., D’Argembeau, A., Salmon, E., Peters, F. & Majerus, S. Fluctuations of attentional networks and default mode network during the resting state reflect variations in cognitive states: Evidence from a novel resting-state experience sampling method. J. Cogn. Neurosci. 29, 95–113 (2017).

    PubMed 

    Google Scholar
     

  • 69.

    Heilbronner, S. R. & Hayden, B. Y. Dorsal anterior cingulate cortex: A bottom-up view. Annu. Rev. Neurosci. 39, 149–170 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 70.

    de Pasquale, F., Della Penna, S., Sporns, O., Romani, G. L. & Corbetta, M. A dynamic core network and global efficiency in the resting human brain. Cereb. Cortex 26, 4015–4033 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 71.

    Spadone, S. et al. Dynamic reorganization of human resting-state networks during visuospatial attention. Proc. Natl. Acad. Sci. USA 112, 8112–8117 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 72.

    Smith, S. M. et al. Correspondence of the brain’s functional architecture during activation and rest. Proc. Natl. Acad. Sci. USA 106, 13040–13045 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 73.

    Meehan, T. P. et al. Top-down cortical interactions in visuospatial attention. Brain Struct. Funct. 222, 3127–3145 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 74.

    Del Missier, F., Hansson, P., Parker, A. M., Bruine de Bruin, W. & Mäntylä, T. Decision-making competence in older adults: A rosy view from a longitudinal investigation. Psychol. Aging 20, 20 (2020).


    Google Scholar
     

  • 75.

    Whitaker, K. M. et al. Sedentary behaviors and cardiometabolic risk: An isotemporal substitution analysis. Am. J. Epidemiol. 187, 181–189 (2017).

    PubMed Central 

    Google Scholar
     

  • 76.

    Xia, Y. et al. Tracking the dynamic functional connectivity structure of the human brain across the adult lifespan. Hum. Brain Mapp. 40, 717–728 (2019).

    PubMed 

    Google Scholar
     

  • 77.

    Rose, G. Strategy of prevention: Lessons from cardiovascular disease. Br. Med. J. (Clin. Res. Ed.) 282, 1847–1851 (1981).

    CAS 

    Google Scholar
     

  • 78.

    Schuna, J. M., Johnson, W. D. & Tudor-Locke, C. Adult self-reported and objectively monitored physical activity and sedentary behavior: NHANES 2005–2006. Int. J. Behav. Nutr. Phys. Act. 10, 126 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 79.

    Tansley, D. P., Jome, L. M., Haase, R. F. & Martens, M. P. The effects of message framing on college students’ career decision making. J. Career Assess. 15, 301–316 (2007).


    Google Scholar
     

  • 80.

    Blumenthal-Barby, J. S. & Krieger, H. Cognitive biases and heuristics in medical decision making: A critical review using a systematic search strategy. Med. Decis. Mak. 35, 539–557 (2014).


    Google Scholar
     

  • 81.

    Schwaiger, R., Kirchler, M., Lindner, F. & Weitzel, U. Determinants of investor expectations and satisfaction. A study with financial professionals. J. Econ. Dyn. Control 20, 103675 (2019).

    MATH 

    Google Scholar
     

  • 82.

    Roszkowski, M. J. & Snelbecker, G. E. Effects of “Framing” on measures of risk tolerance: Financial planners are not immune. J. Behav. Econ. 19, 237–246 (1990).


    Google Scholar
     

  • 83.

    Wheeler, M. J. et al. Sedentary behavior as a risk factor for cognitive decline? A focus on the influence of glycemic control in brain health. Alzheimer’s Dement. Transl. Res. Clin. Interv. 3, 291–300 (2017).


    Google Scholar
     

  • 84.

    Voss, M. W., Carr, L. J., Clark, R. & Weng, T. Revenge of the “sit” II: Does lifestyle impact neuronal and cognitive health through distinct mechanisms associated with sedentary behavior and physical activity?. Ment. Health Phys. Act. 7, 9–24 (2014).


    Google Scholar
     

  • 85.

    Brocklebank, L. A., Falconer, C. L., Page, A. S., Perry, R. & Cooper, A. R. Accelerometer-measured sedentary time and cardiometabolic biomarkers: A systematic review. Prev. Med. 76, 92–102 (2015).

    PubMed 

    Google Scholar
     

  • 86.

    Benatti, F. B. & Ried-Larsen, M. The effects of breaking up prolonged sitting time: A review of experimental studies. Med. Sci. Sport. Exerc. 47, 2053–2061 (2015).


    Google Scholar
     

  • 87.

    Broadney, M. M. et al. Effects of interrupting sedentary behavior with short bouts of moderate physical activity on glucose tolerance in children with overweight and obesity: A randomized, crossover trial. Diabetes Care 20, 20 (2018).


    Google Scholar
     

  • 88.

    Konishi, M. et al. Endothelial insulin receptors differentially control insulin signaling kinetics in peripheral tissues and brain of mice. Proc. Natl. Acad. Sci. 114, E8478–E8487 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 89.

    Schwartz, M. W. et al. Kinetics and specificity of insulin uptake from plasma into cerebrospinal fluid. Am. J. Physiol. Endocrinol. Metab. 259, E378 (1990).

    CAS 

    Google Scholar
     

  • 90.

    Kullmann, S. et al. Intranasal insulin modulates intrinsic reward and prefrontal circuitry of the human brain in lean women. Neuroendocrinology 97, 176–182 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 91.

    Kullmann, S. et al. Intranasal insulin enhances brain functional connectivity mediating the relationship between adiposity and subjective feeling of hunger. Sci. Rep. 7, 1627 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 92.

    Willette, A. A. et al. Association of insulin resistance with cerebral glucose uptake in late middle-aged adults at risk for Alzheimer disease. JAMA Neurol. 72, 1013–1020 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 93.

    Gonzales, M. M. et al. Insulin sensitivity as a mediator of the relationship between BMI and working memory-related brain activation. Obesity 18, 2131–2137 (2010).

    PubMed 

    Google Scholar
     

  • 94.

    Ryan, J. P. et al. Insulin sensitivity predicts brain network connectivity following a meal. Neuroimage 171, 268–276 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 95.

    Voss, M. W. et al. Fitness, but not physical activity, is related to functional integrity of brain networks associated with aging. Neuroimage 131, 113–125 (2016).

    PubMed 

    Google Scholar
     

  • 96.

    Kim, Y. S. et al. Relationship between physical activity and general mental health. Prev. Med. 55, 458–463 (2012).

    PubMed 

    Google Scholar
     

  • 97.

    Gay, J. L., Buchner, D. M. & Schmidt, M. D. Dose–response association of physical activity with HbA1c: Intensity and bout length. Prev. Med. 86, 58–63 (2016).

    PubMed 

    Google Scholar
     

  • 98.

    Matthews, C. E. et al. Measurement of active and sedentary behavior in context of large epidemiologic studies. Med. Sci. Sport. Exerc. 50, 266–276 (2018).


    Google Scholar
     

  • 99.

    Skotte, J., Korshøj, M., Kristiansen, J., Hanisch, C. & Holtermann, A. Detection of physical activity types using triaxial accelerometers. J. Phys. Act. Health 11, 76–84 (2014).

    PubMed 

    Google Scholar
     

  • 100.

    Lugade, V., Fortune, E., Morrow, M. & Kaufman, K. Validity of using tri-axial accelerometers to measure human movement—part I: Posture and movement detection. Med. Eng. Phys. 36, 169–176 (2014).

    PubMed 

    Google Scholar
     

  • 101.

    Umstattd Meyer, M. R., Baller, S. L., Mitchell, S. M. & Trost, S. G. Comparison of 3 accelerometer data reduction approaches, step counts, and 2 self-report measures for estimating physical activity in free-living adults. J. Phys. Act. Health 10, 1068–1074 (2013).

    PubMed 

    Google Scholar
     

  • 102.

    Association, W. M. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 310, 2191–2194 (2013).


    Google Scholar
     

  • 103.

    Thomas, S., Reading, J. & Shephard, R. J. Revision of the Physical Activity Readiness Questionnaire (PAR-Q). Can. J. Sport Sci. 17, 338–345 (1992).

    CAS 
    PubMed 

    Google Scholar
     

  • 104.

    Matthews, C. E., Ainsworth, B. E., Thompson, R. W. & Bassett, D. R. J. Sources of variance in daily physical activity levels as measured by an accelerometer. Med. Sci. Sport. Exerc. 34, 1376–1381 (2002).


    Google Scholar
     

  • 105.

    Kaya, F., Delen, E. & Bulut, O. Test review: Shipley-2 manual. J. Psychoeduc. Assess. 30, 20 (2012).


    Google Scholar
     

  • 106.

    Peeters, G., van Gellecum, Y., Ryde, G., Farías, N. A. & Brown, W. J. Is the pain of activity log-books worth the gain in precision when distinguishing wear and non-wear time for tri-axial accelerometers?. J. Sci. Med. Sport 16, 515–519 (2013).

    PubMed 

    Google Scholar
     

  • 107.

    Migueles, J. H. et al. Accelerometer data collection and processing criteria to assess physical activity and other outcomes: A systematic review and practical considerations. Sport. Med. 47, 1821–1845 (2017).


    Google Scholar
     

  • 108.

    Trost, S. G., Mciver, K. L. & Pate, R. R. Conducting accelerometer-based activity assessments in field-based research. Med. Sci. Sport. Exerc. 37, S531–S543 (2005).


    Google Scholar
     

  • 109.

    Matthews, C. E. et al. Amount of time spent in sedentary behaviors in the United States, 2003–2004. Am. J. Epidemiol. 167, 875–881 (2008).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 110.

    Troiano, R. P. et al. Physical activity in the United States measured by accelerometer. Med. Sci. Sport. Exerc. 40, 181–188 (2008).


    Google Scholar
     

  • 111.

    Auerbach, E. J., Xu, J., Yacoub, E., Moeller, S. & Uğurbil, K. Multiband accelerated spin-echo echo planar imaging with reduced peak RF power using time-shifted RF pulses. Magn. Reson. Med. 69, 1261–1267 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 112.

    Van Dijk, K. R. A. et al. Intrinsic functional connectivity as a tool for human connectomics: Theory, properties, and optimization. J. Neurophysiol. 103, 297–321 (2010).

    PubMed 

    Google Scholar
     

  • 113.

    Jenkinson, M., Beckmann, C. F., Behrens, T. E. J., Woolrich, M. W. & Smith, S. M. FSL. Neuroimage 62, 782–790 (2012).

    PubMed 

    Google Scholar
     

  • 114.

    Satterthwaite, T. D. et al. An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. Neuroimage 64, 240–256 (2013).

    PubMed 

    Google Scholar
     

  • 115.

    Smith, S. M. Fast robust automated brain extraction. Hum. Brain Mapp. 17, 143–155 (2002).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 116.

    Zhang, Y., Brady, M. & Smith, S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20, 45–57 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 117.

    Power, J. D. et al. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59, 2142–2154 (2012).

    PubMed 

    Google Scholar
     

  • 118.

    Zamroziewicz, M. K., Talukdar, M. T., Zwilling, C. E. & Barbey, A. K. Nutritional status, brain network organization, and general intelligence. Neuroimage 161, 241–250 (2017).

    PubMed 

    Google Scholar
     

  • 119.

    Zwilling, C. E., Talukdar, T., Zamroziewicz, M. K. & Barbey, A. K. Nutrient biomarker patterns, cognitive function, and fMRI measures of network efficiency in the aging brain. Neuroimage 188, 239–251 (2019).

    PubMed 

    Google Scholar
     

  • 120.

    Craddock, R. C. et al. A whole brain fMRI atlas generated via spatially constrained spectral clustering. Hum. Brain Mapp. 33, 1914–1928 (2012).

    PubMed 

    Google Scholar
     

  • 121.

    Yeo, B. T. T., Krienen, F. M., Chee, M. W. L. & Buckner, R. L. Estimates of segregation and overlap of functional connectivity networks in the human cerebral cortex. Neuroimage 88, 212–227 (2014).

    PubMed 

    Google Scholar
     

  • 122.

    van den Heuvel, M. P. et al. Proportional thresholding in resting-state fMRI functional connectivity networks and consequences for patient-control connectome studies: Issues and recommendations. Neuroimage 152, 437–449 (2017).

    PubMed 

    Google Scholar
     

  • 123.

    van Wijk, B. C. M., Stam, C. J. & Daffertshofer, A. Comparing brain networks of different size and connectivity density suing Graph Theory. PLoS One 5, e13701 (2010).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 124.

    Herrmann, S. D., Barreira, T. V., Kang, M. & Ainsworth, B. E. Impact of accelerometer wear time on physical activity data: A NHANES semisimulation data approach. Br. J. Sports Med. 48, 278–282 (2014).

    PubMed 

    Google Scholar
     

  • 125.

    Bruine de Bruin, W. et al. Explaining adult age differences in decision-making competence. J. Behav. Decis. Mak. 25, 352–360 (2012).


    Google Scholar
     

  • 126.

    Tsvetanov, K. A. et al. Extrinsic and intrinsic brain network connectivity maintains cognition across the lifespan despite accelerated decay of regional brain activation. J. Neurosci. 36, 3115–3126 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 127.

    de Lacy, N., McCauley, E., Kutz, J. N. & Calhoun, V. D. Multilevel mapping of sexual dimorphism in intrinsic functional brain networks. Front. Neurosci. 13, 332 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 128.

    Yang, Y., Shields, G. S., Guo, C. & Liu, Y. Executive function performance in obesity and overweight individuals: A meta-analysis and review. Neurosci. Biobehav. Rev. 84, 225–244 (2018).

    PubMed 

    Google Scholar
     

  • 129.

    Measuring Intelligence with Culture Fair Tests. (Hogrefe Ltd., Oxford, 2008).

  • 130.

    Whaley, M. H., Brubaker, P. H., Otto, R. M. & Armstrong, L. E. ACSM’s Guidelines for Exercise Testing and Prescription (Lippincott Williams & Wilkins, Philadelphia, 2006).


    Google Scholar
     

  • 131.

    Borg, G. Perceived exertion as an indicator of somatic stress. Scand. J. Rehabil. Med. 2, 92–98 (1970).

    CAS 
    PubMed 

    Google Scholar
     

  • 132.

    Fletcher, G. F. et al. Exercise standards for testing and training: A statement for healthcare professionals from the American Heart Association. Circulation 104, 1694–1740 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 133.

    CDC, C. for D. C. and P. & Division of Nutrition, Physical Activity, and Obesity, N. C. for C. D. P. and H. P. Defining adult overweight and obesity. https://www.cdc.gov/obesity/adult/defining.html (2020).

  • [ad_2]

    Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *