CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Paustian, K. et al. Climate-smart soils. Nature 532, 49–57 (2016).


    Google Scholar
     

  • 2.

    Todd-Brown, K. E. O. et al. Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations. Biogeosciences 10, 1717–1736 (2013).


    Google Scholar
     

  • 3.

    Bradford, M. A. et al. Managing uncertainty in soil carbon feedbacks to climate change. Nat. Clim. Change 6, 751–758 (2016).


    Google Scholar
     

  • 4.

    Koven, C. D., Hugelius, G., Lawrence, D. M. & Wieder, W. R. Higher climatological temperature sensitivity of soil carbon in cold than warm climates. Nat. Clim. Change 7, 817–822 (2017).


    Google Scholar
     

  • 5.

    Jenkinson, D. S. & Rayner, J. H. The turnover of soil organic matter in some of the Rothamsted classical experiments. Soil Sci. 123, 298–305 (1977).


    Google Scholar
     

  • 6.

    Parton, W. J., Schimel, D. S., Cole, C. V. & Ojima, D. S. Analysis of factors controlling soil organic matter levels in Great Plains Grasslands. Soil Sci. Soc. Am. J. 51, 1173–1179 (1987).


    Google Scholar
     

  • 7.

    Schmidt, M. W. I. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011).


    Google Scholar
     

  • 8.

    Lehmann, J. & Kleber, M. The contentious nature of soil organic matter. Nature 528, 60–68 (2015).


    Google Scholar
     

  • 9.

    Vetter, Y. A., Deming, J. W., Jumars, P. A. & Krieger-Brockett, B. B. A predictive model of bacterial foraging by means of freely released extracellular enzymes. Microb. Ecol. 36, 75–92 (1998).


    Google Scholar
     

  • 10.

    Sugai, S. F. & Schimel, J. P. Decomposition and biomass incorporation of 14C-labeled glucose and phenolics in taiga forest floor: effect of substrate quality, successional state, and season. Soil Biol. Biochem. 25, 1379–1389 (1993).


    Google Scholar
     

  • 11.

    Lane, N. & Martin, W. The energetics of genome complexity. Nature 467, 929–934 (2010).


    Google Scholar
     

  • 12.

    Kästner, M. & Miltner, A. Application of compost for effective bioremediation of organic contaminants and pollutants in soil. Appl. Microbiol. Biotechnol. 100, 3433–3449 (2016).


    Google Scholar
     

  • 13.

    Mentges, A., Feenders, C., Seibt, M., Blasius, B. & Dittmar, T. Functional molecular diversity of marine dissolved organic matter is reduced during degradation. Front. Mar. Sci. 4, 194 (2017).


    Google Scholar
     

  • 14.

    Hemingway, J. D. et al. Mineral protection regulates long-term global preservation of natural organic carbon. Nature 570, 228–231 (2019).


    Google Scholar
     

  • 15.

    Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K. & Paul, E. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob. Change Biol. 19, 988–995 (2013).


    Google Scholar
     

  • 16.

    Roth, V. N. et al. Persistence of dissolved organic matter explained by molecular changes during its passage through soil. Nat. Geosci. 12, 755–761 (2019).


    Google Scholar
     

  • 17.

    Kögel-Knabner, I. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter: fourteen years on. Soil Biol. Biochem. 105, A3–A8 (2017).


    Google Scholar
     

  • 18.

    Kallenbach, C. M., Frey, S. D. & Grandy, A. S. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat. Commun. 7, 13630 (2016).


    Google Scholar
     

  • 19.

    Jiménez-González, M. A., Álvarez, A. M., Hernández, Z. & Almendros, G. Soil carbon storage predicted from the diversity of pyrolytic alkanes. Biol. Fertil. Soils 54, 617–629 (2018).


    Google Scholar
     

  • 20.

    Young, I. M. & Crawford, J. W. Interactions and self-organization in the soil-microbe complex. Science 304, 1634–1637 (2004).


    Google Scholar
     

  • 21.

    Rawlins, B. G. et al. Three-dimensional soil organic matter distribution, accessibility and microbial respiration in macroaggregates using osmium staining and synchrotron X-ray computed tomography. Soil 2, 659–671 (2016).


    Google Scholar
     

  • 22.

    Rovira, A. D. & Greacen, E. L. The effect of aggregate disruption on the activity of microorganisms in the soil. Aust. J. Agric. Res. 8, 659–673 (1957).


    Google Scholar
     

  • 23.

    Dignac, M.-F. et al. Increasing soil carbon storage: mechanisms, effects of agricultural practices and proxies. A review. Agron. Sustain. Dev. 37, 14 (2017).


    Google Scholar
     

  • 24.

    Peng, X., Zhu, Q., Zhang, Z. & Hallett, P. D. Combined turnover of carbon and soil aggregates using rare earth oxides and isotopically labelled carbon as tracers. Soil Biol. Biochem. 109, 81–94 (2017).


    Google Scholar
     

  • 25.

    Chakrawal, A. et al. Dynamic upscaling of decomposition kinetics for carbon cycling models. Geosci. Model Dev. 13, 1399–1429 (2020).


    Google Scholar
     

  • 26.

    Or, D., Smets, B. F., Wraith, J. M., Dechesne, A. & Friedman, S. P. Physical constraints affecting bacterial habitats and activity in unsaturated porous media — a review. Adv. Water Resour. 30, 1505–1527 (2007).


    Google Scholar
     

  • 27.

    Watt, M., Silk, W. K. & Passioura, J. B. Rates of root and organism growth, soil conditions, and temporal and spatial development of the rhizosphere. Ann. Bot. 97, 839–855 (2006).


    Google Scholar
     

  • 28.

    Oyewole, O. A., Inselsbacher, E. & Näsholm, T. Direct estimation of mass flow and diffusion of nitrogen compounds in solution and soil. New Phytol. 201, 1056–1064 (2014).


    Google Scholar
     

  • 29.

    Schimel, J. P., Wetterstedt, J. Å. M., Holden, P. A. & Trumbore, S. E. Drying/rewetting cycles mobilize old C from deep soils from a California annual grassland. Soil Biol. Biochem. 43, 1101–1103 (2011).


    Google Scholar
     

  • 30.

    Homyak, P. M. et al. Effects of altered dry season length and plant inputs on soluble soil carbon. Ecology 99, 2348–2362 (2018).


    Google Scholar
     

  • 31.

    Bouskill, N. J. et al. Belowground response to drought in a tropical forest soil. I. Changes in microbial functional potential and metabolism. Front. Microbiol. 7, 525 (2016).


    Google Scholar
     

  • 32.

    Dacal, M., Bradford, M. A., Plaza, C., Maestre, F. T. & García-Palacios, P. Soil microbial respiration adapts to ambient temperature in global drylands. Nat. Ecol. Evol. 3, 232–238 (2019).


    Google Scholar
     

  • 33.

    Maynard, D. S. et al. Consistent trade-offs in fungal trait expression across broad spatial scales. Nat. Microbiol. 4, 846–853 (2019).


    Google Scholar
     

  • 34.

    Şimşek, E. & Kim, M. The emergence of metabolic heterogeneity and diverse growth responses in isogenic bacterial cells. ISME J. 12, 1199–1209 (2018).


    Google Scholar
     

  • 35.

    German, D. P., Chacon, S. S. & Allison, S. D. Substrate concentration and enzyme allocation can affect rates of microbial decomposition. Ecology 92, 1471–1480 (2011).


    Google Scholar
     

  • 36.

    MacLean, R. C. & Bell, G. Experimental adaptive radiation in Pseudomonas. Am. Nat. 160, 569–581 (2002).


    Google Scholar
     

  • 37.

    Thurner, S., Hanel, R. & Klimek, P. Introduction to the Theory of Complex Systems (Oxford Univ. Press, 2018).

  • 38.

    Konopka, A., Lindemann, S. & Fredrickson, J. Dynamics in microbial communities: unraveling mechanisms to identify principles. ISME J. 9, 1488–1495 (2015).


    Google Scholar
     

  • 39.

    Nadell, C. D., Drescher, K. & Foster, K. R. Spatial structure, cooperation and competition in biofilms. Nat. Rev. Microbiol. 14, 589–600 (2016).


    Google Scholar
     

  • 40.

    Kaiser, C., Franklin, O., Richter, A. & Dieckmann, U. Social dynamics within decomposer communities lead to nitrogen retention and organic matter build-up in soils. Nat. Commun. 6, 8960 (2015).


    Google Scholar
     

  • 41.

    Borer, B., Tecon, R. & Or, D. Spatial organization of bacterial populations in response to oxygen and carbon counter-gradients in pore networks. Nat. Commun. 9, 769 (2018).


    Google Scholar
     

  • 42.

    Tang, J. & Riley, W. J. Weaker soil carbon–climate feedbacks resulting from microbial and abiotic interactions. Nat. Clim. Change 5, 56–60 (2015).


    Google Scholar
     

  • 43.

    Reichstein, M. et al. Deep learning and process understanding for data-driven Earth system science. Nature 566, 195–204 (2019).


    Google Scholar
     

  • 44.

    Chen, X. et al. Effects of plant diversity on soil carbon in diverse ecosystems: a global meta‐analysis. Biol. Rev. 95, 167–183 (2020).


    Google Scholar
     

  • 45.

    Lange, M. et al. Plant diversity increases soil microbial activity and soil carbon storage. Nat. Commun. 6, 6707 (2015).


    Google Scholar
     

  • 46.

    Vermeulen, S. et al. A global agenda for collective action on soil carbon. Nat. Sustain. 2, 2–4 (2019).


    Google Scholar
     

  • 47.

    Vlachos, D. G., Mhadeshwar, A. B. & Kaisare, N. S. Hierarchical multiscale model-based design of experiments, catalysts, and reactors for fuel processing. Comput. Aided Chem. Eng. 21, 9–27 (2006).


    Google Scholar
     

  • 48.

    Fan, J. et al. Improving representation of convective transport for scale-aware parameterization: 1. Convection and cloud properties simulated with spectral bin and bulk microphysics. J. Geophys. Res. Atmospheres 120, 3485–3509 (2015).


    Google Scholar
     

  • 49.

    Molins, S. & Knabner, P. Multiscale approaches in reactive transport modeling. Rev. Mineral. Geochem. 85, 27–48 (2019).


    Google Scholar
     

  • 50.

    Rillig, M. C. et al. The role of multiple global change factors in driving soil functions and microbial biodiversity. Science 366, 886–890 (2019).


    Google Scholar
     

  • 51.

    Petrakis, S., Barba, J., Bond-Lamberty, B. & Vargas, R. Using greenhouse gas fluxes to define soil functional types. Plant Soil 423, 285–294 (2018).


    Google Scholar
     

  • 52.

    Rossel, R. A. V. & Bouma, J. Soil sensing: a new paradigm for agriculture. Agric. Syst. 148, 71–74 (2016).


    Google Scholar
     

  • 53.

    Wieder, W. R. et al. Carbon cycle confidence and uncertainty: exploring variation among soil biogeochemical models. Glob. Change Biol. 24, 1563–1579 (2018).


    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *