CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Li KC, Pandit SD, Guccione S, Bednarski MD. Molecular imaging applications in nanomedicine. Biomed Microdevices. 2004;6:113–6.

    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Moghimi SM, Hunter AC, Murray JC. Nanomedicine: current status and future prospects. FASEB J. 2005;19:311–30.

    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Nasongkla N, Bey E, Ren J, Ai H, Khemtong C, Guthi JS, et al. Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett. 2006;6:2427–30.

    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Skinner SA, Tutton PJM, O’Brien PE. Microvascular architecture of experimental colon tumors in the rat. Cancer Res. 1990;50:2411–7.

    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Suzuki M, Hori K, Abe I, Saito S, Sato H. A new approach to cancer chemotherapy: selective enhancement of tumor blood flow with angiotensin II. J Natl Cancer Inst. 1981;67:663–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Maeda H, Matsumura Y. Tumoritropic and lymphotropic principles of macromolecular drugs. Crit Rev Ther Drug Carr Syst. 1989;6:193–210.

    CAS 

    Google Scholar
     

  • 7.

    Iwai K, Maeda H, Konno T. Use of oily contrast medium for selective drug targeting to tumor: enhanced therapeutic effect and X-ray image. Cancer Res. 1984;44:2115–21.

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46:6387–92.

    CAS 

    Google Scholar
     

  • 9.

    Cammasa S, Suzuki K, Sone C, Sakurai Y, Kataoka K, Okano T. Thermo-responsive polymer nanoparticles with a core-shell micelle structure as site-specific drug carriers. J Controlled Release. 1997;48:157–64.


    Google Scholar
     

  • 10.

    Chung JE, Yokoyama M, Okano T. Inner core segment design for drug delivery control of thermo-responsive polymeric micelles. J Controlled Release. 2000;65:93–103.

    CAS 

    Google Scholar
     

  • 11.

    Liang X, Liu F, Kozlovskaya V, Palchak Z, Kharlampieva E. Thermoresponsive micelles from double LCST-Poly(3-methyl-N-vinylcaprolactam) block copolymers for cancer therapy. ACS Macro Lett. 2015;4:308–11.

    CAS 

    Google Scholar
     

  • 12.

    Hassanzadeh F, Farzan M, Varshosaz J, Khodarahmi GA, Maaleki S, Rostami M. Poly (ethylene-co-vinyl alcohol)-based polymeric thermo-responsive nanocarriers for controlled delivery of epirubicin to hepatocellular carcinoma. Res Pharm Sci. 2017;12:107–18.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Zhao Y. Photocontrollable block copolymer micelles: what can we control? J Mater Chem. 2009;19:4887–95.

    CAS 

    Google Scholar
     

  • 14.

    Ercole F, Davis TP, Evans RA. Photo-responsive systems and biomaterials: photochromic polymers, light-triggered self-assembly, surface modification, fluorescence modulation and beyond. Polym Chem. 2010;1:37–54.

    CAS 

    Google Scholar
     

  • 15.

    Schumers JM, Fustinand CA, Gohy JF. Light-responsive block copolymers. Macromol Rapid Commun. 2010;31:1588–607.

    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Pasparakis G, Manouras T, Argitis P, Vamvakaki M. Photodegradable polymers for biotechnological applications. Macromol Rapid Commun. 2012;33:183–98.

    CAS 
    PubMed 

    Google Scholar
     

  • 17.

    Zhao Y. Light-responsive block copolymer micelles. Macromolecules. 2012;45:3647–57.

    CAS 

    Google Scholar
     

  • 18.

    Husseini GA, Myrup GD, Pitt WG, Christensen DA, Rapoport NY. Factors affecting acoustically triggered release of drugs from polymeric micelles. J Control Release. 2000;69:43–52.

    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Gao Z, Fain HD, Rapoport N. Ultrasound-enhanced tumor targeting of polymeric micellar drug carriers. Mol Pharm. 2004;1:317–30.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Zhang H, Xia H, Wang J, Li Y. High intensity focused ultrasound-responsive release behavior of PLA-b-PEG copolymer micelles. J Control Release. 2009;139:31–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Wu P, Jia Y, Qu F, Sun Y, Wang P, Zhang K, et al. Ultrasound-responsive polymeric micelles for sonoporation-assisted site-specific therapeutic action. ACS Appl Mater Interfaces. 2017;9:25706–16.

    CAS 
    PubMed 

    Google Scholar
     

  • 22.

    Bae Y, Nishiyama N, Fukushima S, Koyama H, Matsumura Y, Kataoka K. Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconjugate Chem. 2005;16:122–30.

    CAS 

    Google Scholar
     

  • 23.

    Convertine AJ, Diab C, Prieve M, Paschal A, Hoffman AS, Johnson PH, et al. pH-responsive polymeric micelle carriers for siRNA drugs. Biomacromolecules. 2010;11:2904–11.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Kondo S, Yamamoto K, Sawama Y, Sasai Y, Yamauchi Y, Kuzuya M. Characterization of novel pH-sensitive polymeric micelles prepared by the self-assembly of amphiphilic block copolymer with poly-4-vinylpyridine block synthesized by mechanochemical solid-state polymerization. Chem Pharm Bull. 2011;59:1200–2.

    CAS 
    PubMed 

    Google Scholar
     

  • 25.

    Kondo S, Asano Y, Koizumi N, Tatematsu K, Sawama Y, Sasai Y, et al. Novel pH-responsive polymeric micelles prepared through self-assembly of amphiphilic block copolymer with poly-4-vinylpyridine block synthesized by mechanochemical solid-state polymerization. Chem Pharm Bull. 2015;63:489–94.

    PubMed 

    Google Scholar
     

  • 26.

    Hiruta Y, Kanda Y, Katsuyama N, Kanazawa H. Dual temperature- and pH-responsive polymeric micelle for selective and efficient two-step doxorubicin delivery. RSC Adv. 2017;7:29540–49.

    CAS 

    Google Scholar
     

  • 27.

    Li Q, Yao W, Yu X, Zhang B, Dong J, Jin Y. Drug-loaded pH-responsive polymeric micelles: simulations and experiments of micelle formation, drug loading and drug release. Colloids Surf B Biointerfaces. 2017;158:709–16.

    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Zhao H, Sterner ES, Coughlin EB, Theato P. o-nitrobenzyl alcohol derivatives: opportunities in polymer and materials science. Macromolecules. 2012;45:1723–36.

    CAS 

    Google Scholar
     

  • 29.

    Zhao Y. Rational design of light-controllable polymer micelles. Chem Rec. 2007;7:286–94.

    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Gohy J-F, Zhao Y. Photo-responsive block copolymer micelles: design and behavior. Chem Soc Rev. 2013;42:7117–29.

    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Abreu CMR, Mendonça PV, Serra AC, Coelho JFJ, Popov AV, Guliashvili T. Accelerated ambient-temperature ATRP of methyl acrylate in alcohol-water solutions with a mixed transition-metal catalyst system. Macromol Chem Phys. 2012;213:1677–87.

    CAS 

    Google Scholar
     

  • 32.

    Ding M, Jiang X, Zhang L, Cheng Z, Zhu X. Recent progress on transition metal catalyst separation and recycling in ATRP. Macromol Rapid Commun. 2015;36:1702–21.

    CAS 
    PubMed 

    Google Scholar
     

  • 33.

    Frazer L. Radical departure: polymerization does more with less. Environ Health Perspect. 2007;115:A258–61.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Kuzuya M, Kondo S, Noguchi A. A new development of mechanochemical solid-state polymerization of vinyl monomers: prodrug syntheses and its detailed mechanistic study. Macromolecules. 1991;24:4047–53.

    CAS 

    Google Scholar
     

  • 35.

    Kuzuya M, Kondo S, Noguchi A, Noda N. Mechanistic study on mechanochemical polymerization of acrylamide. J Polym Sci Part A Polym Chem. 1991;29:489–94.

    CAS 

    Google Scholar
     

  • 36.

    Kuzuya M, Kondo S, Noguchi A, Noda N. Nature of mechanoradical formation and reactivity with oxygen in methacrylic vinyl polymers. J Polym Sci Part B Polym Phys. 1992;30:97–103.

    CAS 

    Google Scholar
     

  • 37.

    Kondo S, Sasai Y, Hosaka S, Ishikawa T, Kuzuya M. Kinetic analysis of the mechanolysis of polymethylmethacrylate in the course of vibratory ball milling at various mechanical energy. J Polym Sci Part A Polym Chem. 2004;42:4161–67.

    CAS 

    Google Scholar
     

  • 38.

    Kuzuya M, Yamauchi Y, Kondo S. Mechanolysis of glucose-based polysaccharides as studied by electron spin resonance. J Phys Chem B. 1999;103:8051–9.

    CAS 

    Google Scholar
     

  • 39.

    Sasai Y, Yamauchi Y, Kondo S, Kuzuya M. Nature of mechanoradical formation of substituted celluloses as studied by electron spin resonance. Chem Pharm Bull. 2004;52:339–44.

    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Doi N, Sasai Y, Yamauchi Y, Adachi T, Kuzuya M, Kondo S. Kinetic analysis of mechanoradical formation during the mechanolysis of dextran and glycogen. Beilstein J Org Chem. 2017;13:1174–83.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Kondo S, Hatakeyama I, Hosaka S, Kuzuya M. Mechanochemical solid-state polymerization (X): the influence of copolymer structure in copolymeric prodrugs on the nature of drug release. Chem Pharm Bull. 2000;48:1882–5.

    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Kondo S, Mori H, Sasai Y, Kuzuya M. Conventional synthesis of amphiphilic block copolymer utilized for polymeric micelle by mechanochemical solid-state polymerization. Chem Pharm Bull. 2007;55:389–92.

    CAS 
    PubMed 

    Google Scholar
     

  • 43.

    Doi N, Sasai Y, Yamauchi Y, Adachi T, Kuzuya M, Kondo S. Development of novel polymeric prodrugs synthesized by mechanochemical solid-state copolymerization of hydroxyethylcellulose and vinyl monomers. Chem Pharm Bull. 2015;63:992–7.

    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Doi N, Sasai Y, Yamauchi Y, Adachi T, Kuzuya M, Kondo S. A novel polymeric prodrugs synthesized by mechanochemical solid-state copolymerization of glucose-based polysaccharides and vinyl monomers. Int J Pharm Sci Invent. 2017;6:38–46.

    CAS 

    Google Scholar
     

  • 45.

    Duncan R. The drawing era of polymer therapeutics. Nat Rev Drug Discov. 2003;2:347–60.

    CAS 
    PubMed 

    Google Scholar
     

  • 46.

    Kopeček J, Kopečková P, Minko T, Lu Z. HPMA copolymer-anticancer drug conjugates: design, activity, and mechanism of action. Eur J Pharm Biopharm. 2000;50:61–81.

    PubMed 

    Google Scholar
     

  • 47.

    Říhová B, Kubáčková K. Clinical implications of N-(2-hydroxypropyl)methacrylamide copolymers. Curr Pharm Biotechnol. 2003;4:311–22.

    PubMed 

    Google Scholar
     

  • 48.

    Talelli M, Rijcken CJF, van Nostrum CF, Storm G, Hennink WE. Micelles based on HPMA copolymers. Adv Drug Deliv Rev. 2010;62:231–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 49.

    Kim K, Kwon S, Park JH, Chung H, Jeong SY, Kwon IC, et al. Physicochemical characterizations of self-assembled nanoparticles of glycol chitosan-deoxycholic acid conjugates. Biomacromolecules. 2005;6:1154–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 50.

    Nam HY, Kwon SM, Chung H, Lee SY, Kwon SH, Jeon H, et al. Cellular uptake mechanism and intracellular fate of hydrophobically modified glycol chitosan nanoparticles. J Control Release. 2009;135:259–67.

    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    Stankovich S, Piner RD, Nguyen S-BT, Ruoff RS. Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon. 2006;44:3342–47.

    CAS 

    Google Scholar
     

  • 52.

    Park C, Lee IH, Lee S, Song Y, Rhue M, Kim C. Cyclodextrin-covered organic nanotubes derived from self-assembly of dendrons and their supramolecular transformation. Proc Natl Acad Sci USA. 2006;103:1199–203.

    CAS 
    PubMed 

    Google Scholar
     

  • 53.

    Li X, Mya KY, Ni X, He C, Leong KW, Li J. Dynamic and static light scattering studies on self-aggregation behavior of biodegradable amphiphilic poly(ethylene oxide)-poly[(R)-3-hydroxybutyrate]-poly(ethylene oxide) triblock copolymers in aqueous solution. J Phys Chem B. 2006;110:5920–6.

    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *