CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Nguyen, N. T. et al. Laparoscopic versus open gastric bypass: A randomized study of outcomes, quality of life, and costs. Ann. Surg. 234, 279 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Salkeld, G., Bagia, M. & Solomon, M. Economic impact of laparoscopic versus open abdominal rectopexy. Br. J. Surg. 91, 1188–1191 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Vanounou, T. et al. Comparing the clinical and economic impact of laparoscopic versus open liver resection. Ann. Surg. Oncol. 17, 998–1009 (2010).

    PubMed 

    Google Scholar
     

  • 4.

    Tsui, C., Klein, R. & Garabrant, M. Minimally invasive surgery: National trends in adoption and future directions for hospital strategy. Surg. Endosc. 27, 2253–2257 (2013).

    PubMed 

    Google Scholar
     

  • 5.

    Surgical operations and procedures performed in hospitals by ICD-9-CM—Eurostat.

  • 6.

    Zheng, B., Cassera, M. A., Martinec, D. V., Spaun, G. O. & Swanström, L. L. Measuring mental workload during the performance of advanced laparoscopic tasks. Surg. Endosc. 24, 45 (2010).

    PubMed 

    Google Scholar
     

  • 7.

    Sarker, S.-J., Telfah, M. M., Onuba, L. & Patel, B. P. Objective assessment of skills acquisition during laparoscopic surgery courses. Surg. Innov. 20, 530–538 (2013).

    PubMed 

    Google Scholar
     

  • 8.

    Van Hove, P. D., Tuijthof, G. J. M., Verdaasdonk, E. G. G., Stassen, L. P. S. & Dankelman, J. Objective assessment of technical surgical skills. Br. J. Surg. 97, 972–987 (2010).

    PubMed 

    Google Scholar
     

  • 9.

    Yule, S., Flin, R., Paterson-Brown, S. & Maran, N. Non-technical skills for surgeons in the operating room: A review of the literature. Surgery 139, 140–149 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Carthey, J., de Leval, M. R., Wright, D. J., Farewell, V. T. & Reason, J. T. Behavioural markers of surgical excellence. Saf. Sci. 41, 409–425 (2003).


    Google Scholar
     

  • 11.

    Mishra, A., Catchpole, K., Dale, T. & McCulloch, P. The influence of non-technical performance on technical outcome in laparoscopic cholecystectomy. Surg. Endosc. 22, 68–73 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Chrouser, K. L., Xu, J., Hallbeck, S., Weinger, M. B. & Partin, M. R. The influence of stress responses on surgical performance and outcomes: Literature review and the development of the surgical stress effects (SSE) framework. Am. J. Surg. 216, 573–584 (2018).

    PubMed 

    Google Scholar
     

  • 13.

    Carswell, C. M., Clarke, D. & Seales, W. B. Assessing mental workload during laparoscopic surgery. Surg. Innov. 12, 80–90 (2005).

    PubMed 

    Google Scholar
     

  • 14.

    Patil, P. V., Hanna, G. B. & Cuschieri, A. Effect of the angle between the optical axis of the endoscope and the instruments’ plane on monitor image and surgical performance. Surg. Endosc. Other Interv. Tech. 18, 111–114 (2004).

    CAS 

    Google Scholar
     

  • 15.

    Dehais, F. et al. Failure to detect critical auditory alerts in the cockpit: evidence for inattentional deafness. Hum. Factors 56, 631–644 (2014).

    PubMed 

    Google Scholar
     

  • 16.

    Hughes-Hallett, A. et al. Inattention blindness in surgery. Surg. Endosc. 29, 3184–3189 (2015).

    PubMed 

    Google Scholar
     

  • 17.

    Wickens, C. D., Hollands, J. G., Banbury, S. & Parasuraman, R. Engineering Psychology & Human Performance. (Psychology Press, 2015).

  • 18.

    Ogden, G. D., Levine, J. M. & Eisner, E. J. Measurement of workload by secondary tasks. Hum. Factors 21, 529–548 (1979).


    Google Scholar
     

  • 19.

    Montero, P. N., Acker, C. E., Heniford, B. T. & Stefanidis, D. Single incision laparoscopic surgery (SILS) is associated with poorer performance and increased surgeon workload compared with standard laparoscopy. Am. Surg. 77, 73–77 (2011).

    PubMed 

    Google Scholar
     

  • 20.

    Scerbo, M. W., Britt, R. C. & Stefanidis, D. Differences in mental workload between traditional and single-incision laparoscopic procedures measured with a secondary task. Am. J. Surg. 213, 244–248 (2017).

    PubMed 

    Google Scholar
     

  • 21.

    Brünken, R., Plass, J. L. & Leutner, D. Assessment of cognitive load in multimedia learning with dual-task methodology: Auditory load and modality effects. Instr. Sci. 32, 115–132 (2004).


    Google Scholar
     

  • 22.

    Hart, S. G. NASA-task load index (NASA-TLX); 20 years later. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting Vol. 50 904–908 (Sage Publications, Sage, 2006).

  • 23.

    Koca, D. et al. Physical and mental workload in single-incision laparoscopic surgery and conventional laparoscopy. Surg. Innov. 22, 294–302 (2015).

    PubMed 

    Google Scholar
     

  • 24.

    Yurko, Y. Y., Scerbo, M. W., Prabhu, A. S., Acker, C. E. & Stefanidis, D. Higher mental workload is associated with poorer laparoscopic performance as measured by the NASA-TLX Tool. Simul. Healthc. J. Soc. Simul. Healthc. 5, 267–271 (2010).


    Google Scholar
     

  • 25.

    Navon, D. & Gopher, D. On the economy of the human-processing system. Psychol. Rev. 86, 214 (1979).


    Google Scholar
     

  • 26.

    Wickens, C. D. Multiple resources and performance prediction. Theor. Issues Ergon. Sci. 3, 159–177 (2002).


    Google Scholar
     

  • 27.

    Haji, F. A. et al. Measuring cognitive load during simulation-based psychomotor skills training: Sensitivity of secondary-task performance and subjective ratings. Adv. Heal. Sci. Educ. 20, 1237–1253 (2015).


    Google Scholar
     

  • 28.

    Charles, R. L. & Nixon, J. Measuring mental workload using physiological measures: A systematic review. Appl. Ergon. 74, 221–232 (2019).

    PubMed 

    Google Scholar
     

  • 29.

    Duschek, S., Muckenthaler, M., Werner, N. & Del Paso, G. A. R. Relationships between features of autonomic cardiovascular control and cognitive performance. Biol. Psychol. 81, 110–117 (2009).

    PubMed 

    Google Scholar
     

  • 30.

    Rieger, A., Stoll, R., Kreuzfeld, S., Behrens, K. & Weippert, M. Heart rate and heart rate variability as indirect markers of surgeons’ intraoperative stress. Int. Arch. Occup. Environ. Health 87, 165–174 (2014).

    PubMed 

    Google Scholar
     

  • 31.

    Arora, S. et al. Stress impairs psychomotor performance in novice laparoscopic surgeons. Surg. Endosc. 24, 2588–2593 (2010).

    PubMed 

    Google Scholar
     

  • 32.

    Alobid, I. et al. Increased cardiovascular and anxiety outcomes but not endocrine biomarkers of stress during performance of endoscopic sinus surgery: A pilot study among novice surgeons. Arch. Otolaryngol. Neck Surg. 137, 487–492 (2011).


    Google Scholar
     

  • 33.

    Payne, R. L. & Rick, J. T. Heart rate as an indicator of stress in suegeons and anaesthetists. J. Psychosom. Res. 30, 411–420 (1986).

    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Hirsch, J. A. & Bishop, B. Respiratory sinus arrhythmia in humans: How breathing pattern modulates heart rate. Am. J. Physiol. Circ. Physiol. 241, H620–H629 (1981).

    CAS 

    Google Scholar
     

  • 35.

    Berntson, G. G., Cacioppo, J. T. & Quigley, K. S. Respiratory sinus arrhythmia: autonomic origins, physiological mechanisms, and psychophysiological implications. Psychophysiology 30, 183–196 (1993).

    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Czyżewska, E., Kiczka, K., Czarnecki, A. & Pokinko, P. The surgeon’s mental load during decision making at various stages of operations. Eur. J. Appl. Physiol. Occup. Physiol. 51, 441–446 (1983).

    PubMed 

    Google Scholar
     

  • 37.

    Böhm, B., Rötting, N., Schwenk, W., Grebe, S. & Mansmann, U. A prospective randomized trial on heart rate variability of the surgical team during laparoscopic and conventional sigmoid resection. Arch. Surg. 136, 305–310 (2001).

    PubMed 

    Google Scholar
     

  • 38.

    Song, M.-H., Tokuda, Y., Nakayama, T., Sato, M. & Hattori, K. Intraoperative heart rate variability of a cardiac surgeon himself in coronary artery bypass grafting surgery. Interact. Cardiovasc. Thorac. Surg. 8, 639–641 (2009).

    PubMed 

    Google Scholar
     

  • 39.

    Sweeney, D. F., Millar, T. J. & Raju, S. R. Tear film stability: A review. Exp. Eye Res. 117, 28–38 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Orchard, L. N. & Stern, J. A. Blinks as an index of cognitive activity during reading. Integr. Physiol. Behav. Sci. 26, 108–116 (1991).

    CAS 
    PubMed 

    Google Scholar
     

  • 41.

    Paprocki, R. & Lenskiy, A. What does eye-blink rate variability dynamics tell us about cognitive performance?. Front. Hum. Neurosci. 11, 620 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Ponder, E. & Kennedy, W. P. On the act of blinking. Q. J. Exp. Physiol. Transl. Integr. 18, 89–110 (1927).


    Google Scholar
     

  • 43.

    Oh, J., Jeong, S.-Y. & Jeong, J. The timing and temporal patterns of eye blinking are dynamically modulated by attention. Hum. Mov. Sci. 31, 1353–1365 (2012).

    PubMed 

    Google Scholar
     

  • 44.

    Fairclough, S. H. & Venables, L. Prediction of subjective states from psychophysiology: A multivariate approach. Biol. Psychol. 71, 100–110 (2006).

    PubMed 

    Google Scholar
     

  • 45.

    Hwang, S.-L. et al. Predicting work performance in nuclear power plants. Saf. Sci. 46, 1115–1124 (2008).


    Google Scholar
     

  • 46.

    Ichikawa, N. & Ohira, H. Eyeblink activity as an index of cognitive processing: Temporal distribution of eyeblinks as an indicator of expectancy in semantic priming. Percept. Mot. Skills 98, 131–140 (2004).

    PubMed 

    Google Scholar
     

  • 47.

    Wascher, E., Heppner, H., Möckel, T., Kobald, S. O. & Getzmann, S. Eye-blinks in choice response tasks uncover hidden aspects of information processing. EXCLI J. 14, 1207 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Wilson, G. F. An analysis of mental workload in pilots during flight using multiple psychophysiological measures. Int. J. Aviat. Psychol. 12, 3–18 (2002).


    Google Scholar
     

  • 49.

    Witten, I. H., Frank, E., Hall, M. A. & Pal, C. J. Data Mining: Practical Machine Learning Tools and Techniques. (Elsevier Inc., 2016). https://doi.org/10.1016/c2009-0-19715-5.

  • 50.

    Mukaka, M. M. A guide to appropriate use of correlation coefficient in medical research. Malawi Med. J. 24, 69–71 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Dimitriev, D. A., Saperova, E. V., Indeykina, O. S. & Dimitriev, A. D. Heart rate variability in mental stress: The data reveal regression to the mean. Data Br. 22, 245–250 (2019).


    Google Scholar
     

  • 52.

    Berntson, G. G. et al. Heart rate variability: origins, methods, and interpretive caveats. Psychophysiology 34, 623–648 (1997).

    CAS 

    Google Scholar
     

  • 53.

    Wright, C. E., Kunz-Ebrecht, S. R., Iliffe, S., Foese, O. & Steptoe, A. Physiological correlates of cognitive functioning in an elderly population. Psychoneuroendocrinology 30, 826–838 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 54.

    Teigen, K. H. Yerkes-Dodson: A law for all seasons. Theory Psychol. 4, 525–547 (1994).


    Google Scholar
     

  • 55.

    Birkmeyer, J. D. et al. Surgical skill and complication rates after bariatric surgery. N. Engl. J. Med. 369, 1434–1442 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 56.

    Sahni, N. R., Dalton, M., Cutler, D. M., Birkmeyer, J. D. & Chandra, A. Surgeon specialization and operative mortality in United States: Retrospective analysis. BMJ 354, i3571 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Shafiei, S. B., Hussein, A. A. & Guru, K. A. Relationship between surgeon’s brain functional network reconfiguration and performance level during robot-assisted surgery. IEEE Access 6, 33472–33479 (2018).


    Google Scholar
     

  • 58.

    Lee, G. I. et al. Comparative assessment of physical and cognitive ergonomics associated with robotic and traditional laparoscopic surgeries. Surg. Endosc. 28, 456–465 (2014).

    PubMed 

    Google Scholar
     

  • 59.

    Dehais, F., Sisbot, E. A., Alami, R. & Causse, M. Physiological and subjective evaluation of a human–robot object hand-over task. Appl. Ergon. 42, 785–791 (2011).

    PubMed 

    Google Scholar
     

  • 60.

    Yarrow, K., Brown, P. & Krakauer, J. W. Inside the brain of an elite athlete: the neural processes that support high achievement in sports. Nat. Rev. Neurosci. 10, 585–596 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 61.

    Frey, C. B. & Osborne, M. A. The future of employment: How susceptible are jobs to computerisation?. Technol. Forecast. Soc. Change 114, 254–280 (2017).


    Google Scholar
     

  • 62.

    Cooper, M. A. et al. Hospital level under-utilization of minimally invasive surgery in the United States: Retrospective review. BMJ 349, g4198 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 63.

    Alfa-Wali, M. & Osaghae, S. Practice, training and safety of laparoscopic surgery in low and middle-income countries. World J. Gastrointest. Surg. 9, 13 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 64.

    Chao, T. E., Mandigo, M., Opoku-Anane, J. & Maine, R. Systematic review of laparoscopic surgery in low-and middle-income countries: Benefits, challenges, and strategies. Surg. Endosc. 30, 1–10 (2016).

    PubMed 

    Google Scholar
     

  • 65.

    Modi, H. N., Singh, H., Yang, G. Z., Darzi, A. & Leff, D. R. A decade of imaging surgeons’ brain function (part I): Terminology, techniques, and clinical translation. Surgery (United States) 162, 1121–1130 (2017).


    Google Scholar
     

  • 66.

    Modi, H. N., Singh, H., Yang, G. Z., Darzi, A. & Leff, D. R. A decade of imaging surgeons’ brain function (part II): A systematic review of applications for technical and nontechnical skills assessment. Surgery (United States) 162, 1130–1139 (2017).


    Google Scholar
     

  • 67.

    admin. Mobita | A ultimate mobile solution for EEG | TMSi. (2018).

  • 68.

    Artinis Medical Systems | fNIRS devices | NIRS devices-Octamon. Artinis Medical Systems | fNIRS devices | NIRS devices.

  • 69.

    McKnight, J. C. et al. Shining new light on mammalian diving physiology using wearable near-infrared spectroscopy. PLOS Biol. 17, e3000306 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 70.

    Artinis Medical Systems | fNIRS devices | NIRS devices-PortaSync. Artinis Medical Systems | fNIRS devices | NIRS devices.

  • 71.

    sccn/labstreaminglayer. (Swartz Center for Computational Neuroscience, 2019).

  • 72.

    Zakeri, Z. Optimised use of independent component analysis for EEG signal processing. 186.

  • 73.

    Dimigen, O. & Berlin, H.-U. Z. Optimized ICA-based removal of ocular EEG artifacts from free viewing experiments. (2018).

  • 74.

    Groppe, D. M., Makeig, S. & Kutas, M. Identifying reliable independent components via split-half comparisons. Neuroimage 45, 1199–1211 (2009).

    PubMed 

    Google Scholar
     

  • 75.

    Zakeri, Z., Assecondi, S., Bagshaw, A. P. & Arvanitis, T. N. Influence of signal preprocessing on ICA-based EEG decomposition. In XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013 (ed. Roa Romero, L. M.) Vol. 41 734–737 (Springer, New York, 2014).

  • 76.

    Mognon, A., Jovicich, J., Bruzzone, L. & Buiatti, M. ADJUST: An automatic EEG artifact detector based on the joint use of spatial and temporal features. Psychophysiology 48, 229–240 (2011).

    PubMed 

    Google Scholar
     

  • 77.

    EEGLAB, SIFT, NFT, BCILAB, and ERICA: New Tools for Advanced EEG Processing.

  • 78.

    Keles, H. O., Barbour, R. L. & Omurtag, A. Hemodynamic correlates of spontaneous neural activity measured by human whole-head resting state EEG+ fNIRS. Neuroimage 138, 76–87 (2016).

    PubMed 

    Google Scholar
     

  • 79.

    Ahmet Omurtag, H. A. and H. O. K. Decoding Human Mental States by Whole-Head EEG+fNIRS During Category Fluency Task Performance—IOPscience. (IOP Publishing 066003, 2017). https://iopscience.iop.org/article/10.1088/1741-2552/aa814b; https://doi.org/10.1088/1741-2552/aa814b.

  • 80.

    Chatterjee, S. & Hadi, A. S. Regression Analysis by Example (Wiley, New York, 2015).


    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *