CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Mets B, Davidson O, de Coninck H, Loos M, Meyer L. Carbon dioxide capture and storage. Cambridge: Cambridge University Press; 2005.

  • 2.

    Styring P, Quadrelli EA, Armstrong K. Carbon dioxide utilization: closing the carbon cycle. New York: Elsevier; 2014.

  • 3.

    Bui M, MacDowell N, Carbon Capture and storage. Cambridge: Royal Society of Chemistry; 2019.

  • 4.

    20 Years of carbon capture and storage. International Energy Agency. 2016. https://webstore.iea.org/20-years-of-carbon-capture-and-storage. Accessed 5 Dec 2016.

  • 5.

    Taniguchi I, Itaoka K. CO2 capture, transportation, and storage technology. In: Kato Y, Koyama M, Fukushima Y, Nakagaki T, editors. Energy technology roadmaps of Japan. Tokyo: Springer; 2016. p. 343–58.

  • 6.

    Galizia M, Chi WS, Smith ZP, Merkel TC, Baker RW, Freeman BD. 50th Anniversary perspective: polymers and mixed matrix membranes for gas and vapor separation: a review and prospective opportunities. Macromolecules. 2017;50:7809–43.

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Yang H, Xu Z, Fan M, Gupta R, Slimane RB, Bland AE, et al. Progress in carbon dioxide separation and capture: a review. J Environ Sci. 2008;20:14–27.

    CAS 
    Article 

    Google Scholar
     

  • 8.

    Basu S, Khan AL, Cano-Odena A, Liu C, Vankelecom IFJ. Membrane-based technologies for biogas separations. Chem Soc Rev. 2010;39:750–68.

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Wang S, Li X, Wu H, Tian Z, Xin Q, He G, et al. Advances in high permeability polymer-based membrane materials for CO2 separations. Energy Environ Sci. 2016;9:1863–90.

    CAS 
    Article 

    Google Scholar
     

  • 10.

    Li P, Wang Z, Qiao Z, Liu Y, Cao X, Li W, et al. Recent developments in membranes for efficient hydrogen purification. J Membr Sci. 2015;495:130–68.

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Seoane B, Coronas J, Gascon I, Benavides ME, Karvan O, Caro J, et al. Metal–organic framework based mixed matrix membranes: a solution for highly efficient CO2 capture? Chem Soc Rev. 2015;44:2421–54.

    CAS 
    Article 

    Google Scholar
     

  • 12.

    Kim SJ, Jeon H, Kim DJ, Kim JH. P25/PVC-g-POEM mixed matrix membranes with simultaneously improved permeability and selectivity for CO2/N2 separation. Polymer. 2016;40:238–44.

    CAS 

    Google Scholar
     

  • 13.

    Merkel T. Pilot testing of a membrane system for post-combustion CO2 capture. US Department of Energy Office of Scientific and Technical Information. https://www.osti.gov/servlets/purl/1337555. Accessed 12 Dec 2019.

  • 14.

    Han Y, Salim W, Chen KK, Wu D, Ho WSW. Field trial of spiral-wound facilitated transport membrane module for CO2 capture from flue gas. J Membr Sci. 2019;575:242–51.

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Merkel T, Lin H, Wei X, Baker R. Power plant post-combustion carbon dioxide capture: an opportunity for membranes. J Membr Sci. 2010;359:126–39.

    CAS 
    Article 

    Google Scholar
     

  • 16.

    Chen Y, Ho WSW. High-molecular-weight polyvinylamine/piperazine glycinate membranes for CO2 capture from flue gas. J Membr Sci. 2016;514:376–84.

    CAS 
    Article 

    Google Scholar
     

  • 17.

    Vakharia V, Salim W, Wu D, Han Y, Chen Y, Zhao L, et al. Scale-up of amine-containing thin-film composite membranes for CO2 capture from flue gas. J Membr Sci. 2018;555:379–87.

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Salim W, Han Y, Vakharia V, Wu D, Wheeler DJ, Ho WSW. Scale-up of amine-containing membranes for hydrogen purification for fuel cells. J Membr Sci. 2019;573:465–75.

    CAS 
    Article 

    Google Scholar
     

  • 19.

    Han Y, Wu D, Ho WSW. Simultaneous effects of temperature and vacuum and feed pressures on facilitated transport membrane for CO2/N2 separation. J Membr Sci. 2019;573:476–84.

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Wang J, Wang S, Xin Q, Li Y. Perspectives on water-facilitated CO2 capture materials. J Mater Chem A. 2017;5:6794–816.

    Article 

    Google Scholar
     

  • 21.

    Taniguchi I, Duan S, Kai T, Kazama S, Jinnai H. Effect of the phase-separated structure on CO2 separation performance of the poly(amidoamine) dendrimer immobilized in a poly(ethylene glycol) network. J Mater Chem A. 2013;1:14514–23.

    CAS 
    Article 

    Google Scholar
     

  • 22.

    Taniguchi I, Urai H, Kai T, Duan S, Kazama S. A CO2-selective molecular gate of poly(amidoamine) dendrimer immobilized in a poly(ethyleneglycol) network. J Membr Sci. 2013;444:96–100.

    CAS 
    Article 

    Google Scholar
     

  • 23.

    Bishnoi S, Rochelle GT. Absorption of carbon dioxide into aqueous piperazine: reaction kinetics, mass transfer and solubility. Chem Eng Sci. 2000;55:5531–43.

    CAS 
    Article 

    Google Scholar
     

  • 24.

    Conway W, Fernandes D, Beyad Y, Burns R, Lawrance G, Puxty G, et al. Reactions of CO2 with aqueous piperazine solutions: formation and decomposition of mono- and dicarbamic acids/carbamates of piperazine at 25.0 °C. J Phys Chem A. 2013;117:806–13.

    CAS 
    Article 

    Google Scholar
     

  • 25.

    Ciftja AF, Hartono A, Svendsen HF. 13C NMR as a method species determination in CO2 absorbent systems. Int J Greenh Gas Control 2013;16:224–32.

    CAS 
    Article 

    Google Scholar
     

  • 26.

    Stowe HM, Paek E, Hwang GS. First-principles assessment of CO2 capture mechanisms in aqueous piperazine solution. Phys Chem Chem Phys. 2016;18:25296–307.

    CAS 
    Article 

    Google Scholar
     

  • 27.

    Sherman BJ, Ciftja AF, Rochelle GT. Thermodynamic and mass transfer modeling of carbon dioxide absorption into aqueous 2-piperidineethanol. Chem Eng Sci. 2016;153:295–307.

    CAS 
    Article 

    Google Scholar
     

  • 28.

    Ying J, Raets S, Eimer D. The activator mechanism of piperazine in aqueous methyldiethanolamine solutions. Energy Procedia. 2017;114:2078–87.

    CAS 
    Article 

    Google Scholar
     

  • 29.

    Wang T, Liu F, Ge K, Fang M. Reaction kinetics of carbon dioxide absorption in aqueous solutions of piperazine, N-(2-aminoethyl) ethanolamine and their blends. Chem Eng J. 2017;314:123–31.

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Taniguchi I, Kai T, Duan S, Kazama S, Jinnai H. A compatible crosslinker for enhancement of CO2 capture of poly(amidoamine) dendrimer-containing polymeric membranes. J Membr Sci. 2015;475:175–83.

    CAS 
    Article 

    Google Scholar
     

  • 31.

    Gaume J, Wong-Wah-Chung P, Rivaton A, Therias S, Gardette JL. Photochemical behavior of PVA as an oxygen-barrier polymer for solar cell encapsulation. RSC Adv. 2011;1:1471–81.

    CAS 
    Article 

    Google Scholar
     

  • 32.

    Kim HM, Lee JK, Lee HS. Transparent and high gas barrier films based on poly(vinyl alcohol)/graphene oxide composites. Thin Solid Films. 2011;519:7766–71.

    CAS 
    Article 

    Google Scholar
     

  • 33.

    Masuda M. Recent advances in polyvinyl alcohol films. In: Finch CA, editor. Polyvinyl alcohol—developments. 2nd ed. New York: Wiley; 1992. p. 403–32.


    Google Scholar
     

  • 34.

    National Astronomical Observatory of Japan. Chronological scientific tables 2020. Tokyo: Maruzen; 2019.

  • 35.

    Jakobsen JP, da Silva EF, Krane H, Scendsen F. NMR study and quantum mechanical calculations on the 2-[(2-aminoethyl)amino]-ethanol–H2O–CO2 system. J Magn Reson. 2008;191:304–14.

    CAS 
    Article 

    Google Scholar
     

  • 36.

    Yamada H, Matsuzaki Y, Chowdhury F, Higashii T. Computational investigation of carbon dioxide absorption in alkanolamine solutions. J Mol Model. 2013;19:4147–53.

    CAS 
    Article 

    Google Scholar
     

  • 37.

    Taniguchi I, Kinugasa K, Toyoda M, Minezaki K. Effect of amine structure on CO2 capture by polymeric membranes. Sci Technol Adv Mater. 2017;18:950–8.

    CAS 
    Article 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *