CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Moncada, S. & Higgs, A. The L-arginine-nitric oxide pathway. N. Engl. J. Med. 329, 2002–2012. https://doi.org/10.1056/NEJM199312303292706 (1993).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 2.

    Liu, X. et al. Diffusion-limited reaction of free nitric oxide with erythrocytes. J. Biol. Chem. 273, 18709–18713 (1998).

    CAS 
    Article 

    Google Scholar
     

  • 3.

    Thomas, D. D., Liu, X., Kantrow, S. P. & Lancaster, J. R. Jr. The biological lifetime of nitric oxide: implications for the perivascular dynamics of NO and O2. Proc. Natl. Acad. Sci. USA 98, 355–360. https://doi.org/10.1073/pnas.011379598 (2001).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 4.

    Govoni, M., Jansson, E. A., Weitzberg, E. & Lundberg, J. O. The increase in plasma nitrite after a dietary nitrate load is markedly attenuated by an antibacterial mouthwash. Nitric Oxide 19, 333–337. https://doi.org/10.1016/j.niox.2008.08.003 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 5.

    Cosby, K. et al. Nitrite reduction to nitric oxide by deoxyhemoglobin vasodilates the human circulation. Nat. Med. 9, 1498–1505. https://doi.org/10.1038/nm954 (2003).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 6.

    Shiva, S. et al. Deoxymyoglobin is a nitrite reductase that generates nitric oxide and regulates mitochondrial respiration. Circ. Res. 100, 654–661. https://doi.org/10.1161/01.RES.0000260171.52224.6b (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 7.

    Rassaf, T. et al. Nitrite reductase function of deoxymyoglobin: oxygen sensor and regulator of cardiac energetics and function. Circ. Res. 100, 1749–1754. https://doi.org/10.1161/CIRCRESAHA.107.152488 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 8.

    Millar, T. M. et al. Xanthine oxidoreductase catalyses the reduction of nitrates and nitrite to nitric oxide under hypoxic conditions. FEBS Lett. 427, 225–228 (1998).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Lundberg, J. O., Weitzberg, E., Lundberg, J. M. & Alving, K. Intragastric nitric oxide production in humans: measurements in expelled air. Gut 35, 1543–1546 (1994).

    CAS 
    Article 

    Google Scholar
     

  • 10.

    Benjamin, N. et al. Stomach NO synthesis. Nature 368, 502. https://doi.org/10.1038/368502a0 (1994).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 11.

    Carlsson, S., Wiklund, N. P., Engstrand, L., Weitzberg, E. & Lundberg, J. O. Effects of pH, nitrite, and ascorbic acid on nonenzymatic nitric oxide generation and bacterial growth in urine. Nitric Oxide 5, 580–586. https://doi.org/10.1006/niox.2001.0371 (2001).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 12.

    Kapil, V., Weitzberg, E., Lundberg, J. O. & Ahluwalia, A. Clinical evidence demonstrating the utility of inorganic nitrate in cardiovascular health. Nitric Oxide 38, 45–57. https://doi.org/10.1016/j.niox.2014.03.162 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 13.

    Dejam, A. et al. Nitrite infusion in humans and nonhuman primates: endocrine effects, pharmacokinetics, and tolerance formation. Circulation 116, 1821–1831. https://doi.org/10.1161/CIRCULATIONAHA.107.712133 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 14.

    Larsen, F. J., Ekblom, B., Sahlin, K., Lundberg, J. O. & Weitzberg, E. Effects of dietary nitrate on blood pressure in healthy volunteers. N. Engl. J. Med. 355, 2792–2793. https://doi.org/10.1056/NEJMc062800 (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 15.

    Kapil, V. et al. Physiological role for nitrate-reducing oral bacteria in blood pressure control. Free Radic. Biol. Med. 55, 93–100. https://doi.org/10.1016/j.freeradbiomed.2012.11.013 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Lara, J. et al. Effects of inorganic nitrate and beetroot supplementation on endothelial function: a systematic review and meta-analysis. Eur. J. Nutr. 55, 451–459. https://doi.org/10.1007/s00394-015-0872-7 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 17.

    Grunwald, J. E., Iannaccone, A. & DuPont, J. Effect of isosorbide mononitrate on the human optic nerve and choroidal circulations. Br. J. Ophthalmol. 83, 162–167 (1999).

    CAS 
    Article 

    Google Scholar
     

  • 18.

    Meyer, P., Flammer, J. & Luscher, T. F. Endothelium-dependent regulation of the ophthalmic microcirculation in the perfused porcine eye: role of nitric oxide and endothelins. Investig. Ophthalmol. Vis. Sci. 34, 3614–3621 (1993).

    CAS 

    Google Scholar
     

  • 19.

    Kang, J. H. et al. Endothelial nitric oxide synthase gene variants and primary open-angle glaucoma: interactions with sex and postmenopausal hormone use. Investig. Ophthalmol. Vis. Sci. 51, 971–979. https://doi.org/10.1167/iovs.09-4266 (2010).

    Article 

    Google Scholar
     

  • 20.

    Nathanson, J. A. & McKee, M. Alterations of ocular nitric oxide synthase in human glaucoma. Investig. Ophthalmol. Vis. Sci. 36, 1774–1784 (1995).

    CAS 

    Google Scholar
     

  • 21.

    Polak, K. et al. Altered nitric oxide system in patients with open-angle glaucoma. Arch. Ophthalmol. 125, 494–498. https://doi.org/10.1001/archopht.125.4.494 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 22.

    Aliancy, J., Stamer, W. D. & Wirostko, B. A review of nitric oxide for the treatment of glaucomatous disease. Ophthalmol. Ther. 6, 221–232. https://doi.org/10.1007/s40123-017-0094-6 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Kaufman, M. B. Pharmaceutical approval update. PT 43, 22–60 (2018).


    Google Scholar
     

  • 24.

    Kang, J. H. et al. Association of dietary nitrate intake with primary open-angle glaucoma: a prospective analysis from the nurses’ health study and health professionals follow-up study. JAMA Ophthalmol. 134, 294–303. https://doi.org/10.1001/jamaophthalmol.2015.5601 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Gopinath, B. et al. Association of dietary nitrate intake with the 15-year incidence of age-related macular degeneration. J. Acad. Nutr. Diet. 118, 2311–2314. https://doi.org/10.1016/j.jand.2018.07.012 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • 26.

    Miletich, I. Molecular regulation of ocular gland development. Semin. Cell. Dev. Biol. https://doi.org/10.1016/j.semcdb.2018.07.023 (2018).

    Article 
    PubMed 

    Google Scholar
     

  • 27.

    Omar, S. A., Webb, A. J., Lundberg, J. O. & Weitzberg, E. Therapeutic effects of inorganic nitrate and nitrite in cardiovascular and metabolic diseases. J. Intern. Med. 279, 315–336. https://doi.org/10.1111/joim.12441 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 28.

    Duncan, C. et al. Chemical generation of nitric oxide in the mouth from the enterosalivary circulation of dietary nitrate. Nat. Med. 1, 546–551 (1995).

    CAS 
    Article 

    Google Scholar
     

  • 29.

    Lundberg, J. O., Weitzberg, E., Cole, J. A. & Benjamin, N. Nitrate, bacteria and human health. Nat. Rev. Microbiol. 2, 593–602. https://doi.org/10.1038/nrmicro929 (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 30.

    Pannala, A. S. et al. The effect of dietary nitrate on salivary, plasma, and urinary nitrate metabolism in humans. Free Radic. Biol. Med. 34, 576–584. https://doi.org/10.1016/s0891-5849(02)01353-9 (2003).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 31.

    Iscan, Y. et al. Tear nitric oxide levels in Behcet’s disease. Medicina (Kaunas) 48, 559–562 (2012).


    Google Scholar
     

  • 32.

    Mirza, G. E. et al. Tear nitrite and nitrate levels as nitric oxide end products in patients with Behcet’s disease and non-Behcet’s uveitis. Ophthalmic Res 33, 48–51. https://doi.org/10.1159/000055641 (2001).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 33.

    Piknova, B. et al. Skeletal muscle as an endogenous nitrate reservoir. Nitric Oxide 47, 10–16. https://doi.org/10.1016/j.niox.2015.02.145 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Piknova, B., Park, J. W., Kwan Jeff Lam, K. & Schechter, A. N. Nitrate as a source of nitrite and nitric oxide during exercise hyperemia in rat skeletal muscle. Nitric Oxide 55–56, 54–61. https://doi.org/10.1016/j.niox.2016.03.005 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Fischbarg, J. The Biology of the Eye (JAI Press, Stamford, 2005).


    Google Scholar
     

  • 36.

    Schmetterer, L. & Polak, K. Role of nitric oxide in the control of ocular blood flow. Prog. Retin. Eye. Res. 20, 823–847 (2001).

    CAS 
    Article 

    Google Scholar
     

  • 37.

    Lundberg, J. O. & Weitzberg, E. The biological role of nitrate and nitrite: the times they are a-changin’. Nitric Oxide 22, 61–63. https://doi.org/10.1016/j.niox.2009.11.004 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 38.

    Jansson, E. A. et al. A mammalian functional nitrate reductase that regulates nitrite and nitric oxide homeostasis. Nat. Chem. Biol. 4, 411–417. https://doi.org/10.1038/nchembio.92 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 39.

    Huang, L., Borniquel, S. & Lundberg, J. O. Enhanced xanthine oxidoreductase expression and tissue nitrate reduction in germ free mice. Nitric Oxide 22, 191–195. https://doi.org/10.1016/j.niox.2010.01.004 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 40.

    Siegfried, C. J., Shui, Y. B., Holekamp, N. M., Bai, F. & Beebe, D. C. Oxygen distribution in the human eye: relevance to the etiology of open-angle glaucoma after vitrectomy. Investig. Ophthalmol. Vis. Sci. 51, 5731–5738. https://doi.org/10.1167/iovs.10-5666 (2010).

    Article 

    Google Scholar
     

  • 41.

    Qin, L. et al. Sialin (SLC17A5) functions as a nitrate transporter in the plasma membrane. Proc. Natl. Acad. Sci. USA 109, 13434–13439. https://doi.org/10.1073/pnas.1116633109 (2012).

    ADS 
    Article 
    PubMed 

    Google Scholar
     

  • 42.

    Srihirun, S. et al. Nitrate uptake and metabolism in human skeletal muscle cell cultures. Nitric Oxide 94, 1–8. https://doi.org/10.1016/j.niox.2019.10.005 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 43.

    Piknova, B. & Schechter, A. N. Measurement of nitrite in blood samples using the ferricyanide-based hemoglobin oxidation assay. Methods Mol. Biol. 704, 39–56. https://doi.org/10.1007/978-1-61737-964-2_4 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Pinder, A. G., Rogers, S. C., Khalatbari, A., Ingram, T. E. & James, P. E. The measurement of nitric oxide and its metabolites in biological samples by ozone-based chemiluminescence. Methods Mol. Biol. 476, 11–28 (2008).

    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *