CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Slutzky, M. W. Brain–machine interfaces: powerful tools for clinical treatment and neuroscientific investigations. Neuroscientist 25, 139–154 (2019).

  • 2.

    Bouton, C. E. et al. Restoring cortical control of functional movement in a human with quadriplegia. Nature 533, 247–250 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Ajiboye, A. B. et al. Restoration of reaching and grasping movements through brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration. Lancet 389, 1821–1830 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Hochberg, L. R. et al. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485, 372–375 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Collinger, J. L. et al. Functional priorities, assistive technology, and brain-computer interfaces after spinal cord injury. J. Rehabil. Res. Dev. 50, 145–160 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Downey, J. E. et al. Blending of brain–machine interface and vision-guided autonomous robotics improves neuroprosthetic arm performance during grasping. J. Neuroeng. Rehabil. 13, 28 (2016).

  • 7.

    Hochberg, L. R. et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442, 164–171 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Pandarinath, C. et al. High performance communication by people with paralysis using an intracortical brain-computer interface. eLife 6, 18554 (2017).


    Google Scholar
     

  • 9.

    Jarosiewicz, B. et al. Virtual typing by people with tetraplegia using a self-calibrating intracortical brain-computer interface. Sci. Transl. Med. 7, 313ra179 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Blabe, C. H. et al. Assessment of brain-machine interfaces from the perspective of people with paralysis. J. Neural Eng. 12, 043002 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Gilja, V. et al. Clinical translation of a high-performance neural prosthesis. Nat. Med. 21, 1142–1145 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Homer, M. L., Nurmikko, A. V., Donoghue, J. P. & Hochberg, L. R. Sensors and decoding for intracortical brain computer interfaces. Annu. Rev. Biomed. Eng. 15, 383–405 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Lebedev, M. A. & Nicolelis, M. A. L. Brain-machine interfaces: from basic science to neuroprostheses and neurorehabilitation. Physiol. Rev. 97, 767–837 (2017).

    PubMed 

    Google Scholar
     

  • 14.

    Schwarz, D. A. et al. Chronic, wireless recordings of large-scale brain activity in freely moving rhesus monkeys. Nat. Methods 11, 670–676 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Carmena, J. M. et al. Learning to control a brain-machine interface for reaching and grasping by primates. PLoS Biol. 1, e42 (2003).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Gao, P. & Ganguli, S. On simplicity and complexity in the brave new world of large-scale neuroscience. Curr. Opin. Neurobiol. 32, 148–155 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 17.

    Wodlinger, B. et al. Ten-dimensional anthropomorphic arm control in a human brain-machine interface: difficulties, solutions, and limitations. J. Neural Eng. 12, 016011 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Mitz, A. R. et al. High channel count single-unit recordings from nonhuman primate frontal cortex. J. Neurosci. Methods 289, 39–47 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Chen, X. et al. 3D printing and modelling of customized implants and surgical guides for non-human primates. J. Neurosci. Methods 286, 38–55 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Gao, H. et al. HermesE: a 96-channel full data rate direct neural interface in 0.13 μm CMOS. IEEE J. Solid-State Circuits 47, 1043–1055 (2012).


    Google Scholar
     

  • 21.

    Miranda, H., Gilja, V., Chestek, C. A., Shenoy, K. V. & Meng, T. H. HermesD: a high-rate long-range wireless transmission system for simultaneous multichannel neural recording applications. IEEE Trans. Biomed. Circuits Syst. 4, 181–191 (2010).

    PubMed 

    Google Scholar
     

  • 22.

    Borton, D. A., Yin, M., Aceros, J. & Nurmikko, A. An implantable wireless neural interface for recording cortical circuit dynamics in moving primates. J. Neural Eng. 10, 026010 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Yin, M. et al. Wireless neurosensor for full-spectrum electrophysiology recordings during free behavior. Neuron 84, 1170–1182 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 24.

    Kao, J. C., Stavisky, S. D., Sussillo, D., Nuyujukian, P. & Shenoy, K. V. Information systems opportunities in brain-machine interface decoders. Proc. IEEE 102, 666–682 (2014).


    Google Scholar
     

  • 25.

    Fraser, G. W., Chase, S. M., Whitford, A. & Schwartz, A. B. Control of a brain-computer interface without spike sorting. J. Neural Eng. 6, 055004 (2009).

    PubMed 

    Google Scholar
     

  • 26.

    Perel, S. et al. Single-unit activity, threshold crossings, and local field potentials in motor cortex differentially encode reach kinematics. J. Neurophysiol. 114, 1500–1512 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Christie, B. P. et al. Comparison of spike sorting and thresholding of voltage waveforms for intracortical brain-machine interface performance. J. Neural Eng. 12, 016009 (2015).

    PubMed 

    Google Scholar
     

  • 28.

    Li, J. & Li, Z. Sums of spike waveform features for motor decoding. Front. Neurosci. 11, 406 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Trautmann, E. M. et al. Accurate estimation of neural population dynamics without spike sorting. Neuron 103, 292–308 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Han, D., Zheng, Y., Rajkumar, R., Dawe, G. & Je, M. A 0.45 v 100-channel neural-recording IC with sub-μW/channel consumption in 0.18 μm CMOS. In IEEE Int. Solid-State Circuits Conf. 291–292 (IEEE, 2013).

  • 31.

    Irwin, Z. T. et al. Enabling low-power, multi-modal neural interfaces through a common, low-bandwidth feature space. IEEE Trans. Neural Syst. Rehabil. Eng. 24, 521–531 (2016).

    PubMed 

    Google Scholar
     

  • 32.

    Sodagar, A. M., Wise, K. D. & Najafi, K. A fully integrated mixed-signal neural processor for implantable multichannel cortical recording. IEEE Trans. Biomed. Eng. 54, 1075–1088 (2007).

    PubMed 

    Google Scholar
     

  • 33.

    Karkare, V., Gibson, S. & Marković, D. A 75-μw, 16-channel neural spike-sorting processor with unsupervised clustering. IEEE J. Solid-State Circuits 48, 2230–2238 (2013).


    Google Scholar
     

  • 34.

    Muratore, D. G. et al. A data-compressive wired-OR readout for massively parallel neural recording. IEEE Trans. Biomed. Circuits Syst. 13, 1128–1140 (2019).

    PubMed 

    Google Scholar
     

  • 35.

    Aprile, C. et al. Adaptive learning-based compressive sampling for low-power wireless implants. IEEE Trans. Circuits Syst. I 65, 3929–3941 (2018).


    Google Scholar
     

  • 36.

    Pagin, M. & Ortmanns, M. A neural data lossless compression scheme based on spatial and temporal prediction. In IEEE Biomedical Circuits and Systems Conf. 1–4 (IEEE, 2017).

  • 37.

    Wu, T., Zhao, W., Keefer, E. & Yang, Z. Deep compressive autoencoder for action potential compression in large-scale neural recording. J. Neural Eng. 15, 066019 (2018).

    PubMed 

    Google Scholar
     

  • 38.

    Okazawa, T. & Akita, I. A time-domain analog spatial compressed sensing encoder for multi-channel neural recording. Sensors 18, 184 (2018).


    Google Scholar
     

  • 39.

    Shoaran, M., Lopez, M. M., Pasupureddi, V. S. R., Leblebici, Y. & Schmid, A. A low-power area-efficient compressive sensing approach for multi-channel neural recording. In IEEE Int. Symp. on Circuits and Systems 2191–2194 (IEEE, 2013).

  • 40.

    Musk, E. Neuralink, an integrated brain-machine interface platform with thousands of channels. J. Med. Internet. Res. 21, e16194 (2019).

  • 41.

    Jun, J. J. et al. Fully integrated silicon probes for high-density recording of neural activity. Nature 551, 232–236 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Lopez, C. M. et al. A neural probe with up to 966 electrodes and up to 384 configurable channels in 0.13 μm SOI CMOS. IEEE Trans. Biomed. Circuits Syst. 11, 510–522 (2017).


    Google Scholar
     

  • 43.

    De Dorigo, D. et al. Fully immersible subcortical neural probes with modular architecture and a Delta-Sigma ADC integrated under each electrode for parallel readout of 144 recording sites. IEEE J. Solid-State Circuits 53, 3111–3125 (2018).


    Google Scholar
     

  • 44.

    Lee, B. et al. An inductively-powered wireless neural recording and stimulation system for freely-behaving animals. IEEE Trans. Biomed. Circuits Syst. 13, 413–424 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Angotzi, G. N. et al. SiNAPS: an implantable active pixel sensor CMOS-probe for simultaneous large-scale neural recordings. Biosens. Bioelectron. 126, 355–364 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 46.

    Fiáth, R. et al. A silicon-based neural probe with densely-packed low-impedance titanium nitride microelectrodes for ultrahigh-resolution in vivo recordings. Biosens. Bioelectron. 106, 86–92 (2018).

    PubMed 

    Google Scholar
     

  • 47.

    Einevoll, G. T., Kayser, C., Logothetis, N. K. & Panzeri, S. Modelling and analysis of local field potentials for studying the function of cortical circuits. Nat. Rev. Neurosci. 14, 770–785 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 48.

    Belitski, A. et al. Low-frequency local field potentials and spikes in primary visual cortex convey independent visual information. J. Neurosci. 28, 5696–5709 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Buzsáki, G., Anastassiou, C. A. & Koch, C. The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes. Nat. Rev. Neurosci. 13, 407–420 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Chestek, C. A. et al. Long-term stability of neural prosthetic control signals from silicon cortical arrays in rhesus macaque motor cortex. J. Neural Eng. 8, 045005 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Todorova, S., Sadtler, P., Batista, A., Chase, S. & Ventura, V. To sort or not to sort: the impact of spike-sorting on neural decoding performance. J. Neural Eng. 11, 056005 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 52.

    Kao, J. C., Nuyujukian, P., Ryu, S. I. & Shenoy, K. V. A high-performance neural prosthesis incorporating discrete state selection with hidden Markov models. IEEE Trans. Biomed. Eng. 64, 935–945 (2017).

    PubMed 

    Google Scholar
     

  • 53.

    Shanechi, M. M. et al. Rapid control and feedback rates enhance neuroprosthetic control. Nat. Commun. 8, 13825 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Even-Chen, N., Stavisky, S. D., Kao, J. C., Ryu, S. I. & Shenoy, K. V. Augmenting intracortical brain-machine interface with neurally driven error detectors. J. Neural Eng. 14, 066007 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Collinger, J. L. et al. High-performance neuroprosthetic control by an individual with tetraplegia. Lancet 381, 557–564 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 56.

    Muelling, K. et al. Autonomy infused teleoperation with application to BCI manipulation. Auton. Robots 41, 1401–1422 (2017).

  • 57.

    Gilja, V. et al. A high-performance neural prosthesis enabled by control algorithm design. Nat. Neurosci. 15, 1752–1757 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 58.

    Katyal, K. D. et al. A collaborative BCI approach to autonomous control of a prosthetic limb system. In 2014 IEEE Int. Conf. on Systems, Man, and Cybernetics 1479–1482 (IEEE, 2014).

  • 59.

    Oby, E. R. et al. Extracellular voltage threshold settings can be tuned for optimal encoding of movement and stimulus parameters. J. Neural Eng. 13, 036009 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 60.

    Stavisky, S. D., Kao, J. C., Nuyujukian, P., Ryu, S. I. & Shenoy, K. V. A high performing brain-machine interface driven by low-frequency local field potentials alone and together with spikes. J. Neural Eng. 12, 036009 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 61.

    Flint, R. D., Lindberg, E. W., Jordan, L. R., Miller, L. E. & Slutzky, M. W. Accurate decoding of reaching movements from field potentials in the absence of spikes. J. Neural Eng. 9, 046006 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 62.

    Even-Chen, N. et al. Feasibility of automatic error detect-and-undo system in human intracortical brain-computer interfaces. IEEE Trans. Biomed. Eng. 65, 1771–1784 (2018).

    PubMed 

    Google Scholar
     

  • 63.

    Brandman, D. M. et al. Robust closed-loop control of a cursor in a person with tetraplegia using Gaussian process regression. Neural Comput. 30, 2986–3008 (2018).

  • 64.

    Fernández, E. & Botella, P. Biotolerability of intracortical microelectrodes. Adv. Biosyst. 2, 1700115 (2018).


    Google Scholar
     

  • 65.

    Zhai, S., Hunter, M. & Smith, B. A. Performance optimization of virtual keyboards. Hum. Comput. Interact. 17, 229–269 (2002).


    Google Scholar
     

  • 66.

    Zumsteg, Z. S. et al. Power feasibility of implantable digital spike sorting circuits for neural prosthetic systems. IEEE Trans. Neural Syst. Rehabil. Eng. 13, 272–279 (2005).

    PubMed 

    Google Scholar
     

  • 67.

    Kao, J. C. et al. Single-trial dynamics of motor cortex and their applications to brain-machine interfaces. Nat. Commun. 6, 7759 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 68.

    Shanechi, M. M. Brain-machine interface control algorithms. IEEE Trans. Neural Syst. Rehabil. Eng. 25, 1725–1734 (2017).

  • 69.

    Sussillo, D., Stavisky, S. D., Kao, J. C., Ryu, S. I. & Shenoy, K. V. Making brain-machine interfaces robust to future neural variability. Nat. Commun. 7, 13749 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 70.

    Glaser, J. I., Chowdhury, R. H., Perich, M. G., Miller, L. E. & Kording, K. P. Machine learning for neural decoding. Preprint at https://arxiv.org/abs/1708.00909 (2017).

  • 71.

    Cunningham, J. P., Gilja, V., Ryu, S. I. & Shenoy, K. V. Methods for estimating neural firing rates, and their application to brain-machine interfaces. Neural Netw. 22, 1235–1246 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 72.

    Perge, J. A. et al. Intra-day signal instabilities affect decoding performance in an intracortical neural interface system. J. Neural Eng. 10, 036004 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 73.

    Cerebus: Instructions for Use (Blackrock Microsystems, 2020); https://www.blackrockmicro.com/wp-content/ifu/LB-0028-15.00-Cerebus-Instructions-for-Use.pdf

  • 74.

    Bahrami, H., Mirbozorgi, S. A., Rusch, L. A. & Gosselin, B. BER performance of implant-to-air high-speed UWB data communications for neural recording systems. IEEE Proc. Eng. Med. Biol. Soc. Conf. 2014, 3961–3964 (2014).

    CAS 

    Google Scholar
     

  • 75.

    Ebrazeh, A. & Mohseni, P. 30 pJ/b, 67 Mbps, centimeter-to-meter range data telemetry with an IR-UWB wireless link. IEEE Trans. Biomed. Circuits Syst. 9, 362–369 (2015).

    PubMed 

    Google Scholar
     

  • 76.

    Harrison, R. R. et al. Wireless neural recording with single low-power integrated circuit. IEEE Trans. Neural Syst. Rehabil. Eng. 17, 322–329 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 77.

    Walden, R. H. Analog-to-digital converter survey and analysis. IEEE J. Sel. areas Commun. 17, 539–550 (1999).


    Google Scholar
     

  • 78.

    Gibson, S., Chandler, R., Karkare, V., Markovic, D. & Judy, J. W. An efficiency comparison of analog and digital spike detection. In 2009 4th Int. IEEE/EMBS Conf. on Neural Engineering 423–428 (IEEE, 2009).

  • 79.

    Gibson, S., Judy, J. W. & Marković, D. Technology-aware algorithm design for neural spike detection, feature extraction, and dimensionality reduction. IEEE Trans. Neural Syst. Rehabil. Eng. 18, 469–478 (2010).

    PubMed 

    Google Scholar
     

  • 80.

    Yang, Z., Zhao, Q., Keefer, E. & Liu, W. Noise characterization, modeling, and reduction for in vivo neural recording. Adv. Neural Inf. Process. Syst. 22, 2160–2168 (2009).


    Google Scholar
     

  • 81.

    Chandrakumar, H. & Marković, D. An 80-mVpp linear-input range, 1.6-GΩ input impedance, low-power chopper amplifier for closed-loop neural recording that is tolerant to 650-mVpp common-mode interference. IEEE J. Solid-State Circuits 52, 2811–2828 (2017).


    Google Scholar
     

  • 82.

    Mendrela, A. E. et al. A bidirectional neural interface circuit with active stimulation artifact cancellation and cross-channel common-mode noise suppression. IEEE J. Solid-State Circuits 51, 955–965 (2016).


    Google Scholar
     

  • 83.

    Muller, R., Gambini, S. & Rabaey, J. M. A 0.013 mm2, 5 μW, DC-coupled neural signal acquisition IC with 0.5 V supply. IEEE J. Solid-State Circuits 47, 232–243 (2012).


    Google Scholar
     

  • 84.

    Steyaert, M. S. & Sansen, W. M. A micropower low-noise monolithic instrumentation amplifier for medical purposes. IEEE J. Solid-State Circuits 22, 1163–1168 (1987).


    Google Scholar
     

  • 85.

    Kim, S.-J. et al. A 0.5-V sub-μW/channel neural recording IC with delta-modulation-based spike detection. In IEEE Asian Solid-State Circuits Conference 189–192 (IEEE, 2014).

  • 86.

    Dong, H., Yuanjin, Z., Rajkumar, R., Dawe, G. & Minkyu, J. 0.45 V 100-channel neural-recording IC with sub-mW/channel consumption in 0.18 mm CMOS. In IEEE Int. Solid-State Circuits Conf. 17–21 (IEEE, 2013).

  • 87.

    Muller, R. Low power, scalable platforms for implantable neural recording. PhD dissertation, Univ. California Berkeley (2015); http://www2.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-19.html

  • 88.

    McCreary, J. L. & Gray, P. R. All-MOS charge redistribution analog-to-digital conversion techniques. IEEE J. Solid-State Circuits 10, 371–379 (1975).


    Google Scholar
     

  • 89.

    Karkare, V., Chandrakumar, H., Rozgić, D. & Marković, D. Robust, reconfigurable, and power-efficient biosignal recording systems. In IEEE Custom Integrated Circuits Conf. 1–8 (IEEE, 2014).

  • 90.

    Goldsmith, A. Wireless Communications (Cambridge University Press, 2005).

  • 91.

    Miranda, H. & Meng, T. H. A programmable pulse UWB transmitter with 34 energy efficiency for multichannel neuro-recording systems. In IEEE Custom Integrated Circuits Conf. 1–4 (IEEE, 2010).

  • 92.

    Obeid, I. & Wolf, P. D. Evaluation of spike-detection algorithms for a brain-machine interface application. IEEE Trans. Biomed. Eng. 51, 905–911 (2004).

    PubMed 

    Google Scholar
     

  • 93.

    Kaiser, J. F. On a simple algorithm to calculate the energy of a signal. Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. 1, 381–384 (1990).


    Google Scholar
     

  • 94.

    Chase, S. M., Schwartz, A. B. & Kass, R. E. Bias, optimal linear estimation, and the differences between open-loop simulation and closed-loop performance of spiking-based brain-computer interface algorithms. Neural Netw. 22, 1203–1213 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 95.

    Willett, F. R. et al. Signal-independent noise in intracortical brain-computer interfaces causes movement time properties inconsistent with Fitts’ law. J. Neural Eng. 14, 026010 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 96.

    Gao, P. et al. A theory of multineuronal dimensionality, dynamics and measurement. Preprint at https://www.biorxiv.org/content/10.1101/214262v2 (2017).

  • 97.

    Liberti, W. A., Perkins, L. N., Leman, D. P. & Gardner, T. J. An open source, wireless capable miniature microscope system. J. Neural Eng. 14, 045001 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 98.

    Foster, J. D. et al. A freely-moving monkey treadmill model. J. Neural Eng. 11, 046020 (2014).

    PubMed 

    Google Scholar
     

  • 99.

    Cunningham, J. P. et al. A closed-loop human simulator for investigating the role of feedback control in brain-machine interfaces. J. Neurophysiol. 105, 1932–1949 (2011).

    PubMed 

    Google Scholar
     

  • 100.

    Santhanam, G., Ryu, S. I., Yu, B. M., Afshar, A. & Shenoy, K. V. A high-performance brain-computer interface. Nature 442, 195–198 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 101.

    Jindal, R. Compact noise models for MOSFETs. IEEE Trans. Electron Devices 53, 2051–2061 (2006).


    Google Scholar
     

  • 102.

    Scholten, A. et al. Noise modeling for RF CMOS circuit simulation. IEEE Trans. Electron Devices 50, 618–632 (2003).


    Google Scholar
     

  • 103.

    Hariprasath, V., Guerber, J., Lee, S.-H. & Moon, U.-K. Merged capacitor switching based SAR ADC with highest switching energy-efficiency. Electron. Lett. 46, 620–621 (2010).


    Google Scholar
     

  • 104.

    Razavi, B. The strongarm latch [a circuit for all seasons]. IEEE Solid-State Circuits Mag. 7, 12–17 (2015).


    Google Scholar
     

  • 105.

    Harpe, P., Gao, H., van Dommele, R., Cantatore, E. & van Roermund, A. H. A 0.20 mm2 3 nW signal acquisition IC for miniature sensor nodes in 65 nm CMOS. IEEE J. Solid-State Circuits 51, 240–248 (2016).


    Google Scholar
     

  • 106.

    Chandrakumar, H. & Markovic, D. A 15.2-ENOB continuous-time ΣΔ ADC for a 200mV pp-linear-input-range neural recording front-end. In IEEE International Solid-State Circuits Conf. 232–234 (IEEE, 2018).

  • 107.

    Murmann, B. The race for the extra decibel: a brief review of current ADC performance trajectories. IEEE Solid State Circuits Mag. 7, 58–66 (2015).


    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *