CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Porter, A. E., Patel, N., Skepper, J. N., Best, S. M. & Bonfield, W. Comparison of in vivo dissolution processes in hydroxyapatite and silicon-substituted hydroxyapatite bioceramics. Biomaterials24, 4609–4620 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Murugan, R. & Ramakrishna, S. Nanoengineered biomimetic bone-building blocks. Molecular Building Blocks for Nanotechnology 301–352 (Springer New York).

  • 3.

    Sabir, M. I., Xu, X. & Li, L. A review on biodegradable polymeric materials for bone tissue engineering applications. J. Mater. Sci.44, 5713–5724 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • 4.

    Gorna, K. & Gogolewski, S. Biodegradable porous polyurethane scaffolds for tissue repair and regeneration. J. Biomed. Mater. Res. Part A79, 128–138 (2006).


    Google Scholar
     

  • 5.

    Zanetta, M. et al. Ability of polyurethane foams to support cell proliferation and the differentiation of MSCs into osteoblasts. Acta Biomater.5, 1126–1136 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Szycher, M. Szycher’s Handbook of Polyurethanes, Second Edition (CRC Press, 2012).

  • 7.

    Tavares, L. B. et al. Bio-based polyurethane prepared from Kraft lignin and modified castor oil. Express Polym. Lett.10, 927–940 (2016).

    CAS 

    Google Scholar
     

  • 8.

    Kim, B. K. Cleaner, greener routes for polyurethanes. Express Polym. Lett.10, 873–873 (2016).


    Google Scholar
     

  • 9.

    Jeong, H., Zou, D., Tsutsui, T. & Ha, C.-S. Short-term degradation behaviors of light emitting diodes made of polyurethane derivative with large permanent dipoles on the side chain. Thin Solid Films363, 279–281 (2000).

    ADS 
    CAS 

    Google Scholar
     

  • 10.

    Chattopadhyay, D. K. & Raju, K. V. S. N. Structural engineering of polyurethane coatings for high performance applications. Prog. Polym. Sci.32, 352–418 (2007).

    CAS 

    Google Scholar
     

  • 11.

    Tang, Q., He, J., Yang, R. & Ai, Q. Study of the synthesis and bonding properties of reactive hot-melt polyurethane adhesive. J. Appl. Polym. Sci.128, 2152–2161 (2012).


    Google Scholar
     

  • 12.

    Yang, Z., Wicks, D. A., Yuan, J., Pu, H. & Liu, Y. Newly UV-curable polyurethane coatings prepared by multifunctional thiol- and ene-terminated polyurethane aqueous dispersions: Photopolymerization properties. Polymer51, 1572–1577 (2010).

    CAS 

    Google Scholar
     

  • 13.

    Lamba, N. M. K., Woodhouse, K. A. & Cooper, S. L. Polyurethanes in biomedical applications (CRC Press, New York, 1997).


    Google Scholar
     

  • 14.

    Silvestri, A. et al. Polyurethane-based biomaterials for shape-adjustable cardiovascular devices. J. Appl. Polym. Sci.122, 3661–3671 (2011).

    CAS 

    Google Scholar
     

  • 15.

    Ignacio, C., Gomes, I. A. S. & Oréfice, R. L. Polyurethane membranes with tunable surface properties for biomedical applications. J. Appl. Polym. Sci.121, 3501–3508 (2011).

    CAS 

    Google Scholar
     

  • 16.

    Oertel, G. Polyurethane handbook (Hanser Publishers, New York, 1985).


    Google Scholar
     

  • 17.

    Szycher, M. Szycher’s handbook of polyurethanes (CRC Press, New York, 1999).


    Google Scholar
     

  • 18.

    Singh, H., Sharma, T. P. & Jain, A. K. Reactivity of the raw materials and their effects on the structure and properties of rigid polyurethane foams. J. Appl. Polym. Sci.106, 1014–1023 (2007).

    CAS 

    Google Scholar
     

  • 19.

    Abdel-Hamid, S. M. S. et al. Fabrication and characterization of microcellular polyurethane sisal biocomposites. Molecules24, 4585 (2019).

    CAS 
    PubMed Central 

    Google Scholar
     

  • 20.

    Gupta, A. & Soo Kim, B. Shape memory polyurethane biocomposites based on toughened polycaprolactone promoted by nano-Chitosan. Nanomaterials9, 225 (2019).

    PubMed Central 

    Google Scholar
     

  • 21.

    Hill, C. M. et al. Osteogenesis of osteoblast seeded polyurethane-hydroxyapatite scaffolds in nude mice. Macromol. Symp.253, 94–97 (2007).

    CAS 

    Google Scholar
     

  • 22.

    Huang, M. N., Wang, Y. L. & Luo, Y. F. Biodegradable and bioactive porous polyurethanes scaffolds for bone tissue engineering. J. Biomed. Sci. Eng.02, 36–40 (2009).

    CAS 

    Google Scholar
     

  • 23.

    Rahman, M. M., Shahruzzaman, M., Islam, M. S., Khan, M. N. & Haque, P. Preparation and properties of biodegradable polymer/nano-hydroxyapatite bioceramic scaffold for spongy bone regeneration. J. Polym. Eng.39, 134–142 (2019).

    CAS 

    Google Scholar
     

  • 24.

    Chetty, A. et al. Hydroxyapatite-coated polyurethane for auricular cartilage replacement: An in vitro study. J. Biomed. Mater. Res. Part A84, 475–482 (2008).


    Google Scholar
     

  • 25.

    Huang, X. & Miao, X. Novel porous hydroxyapatite prepared by combining H2O2 foaming with PU sponge and modified with PLGA and bioactive glass. J. Biomater. Appl.21, 351–374 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Vitale-Brovarone, C. et al. Development of glass–ceramic scaffolds for bone tissue engineering: characterisation, proliferation of human osteoblasts and nodule formation. Acta Biomater.3, 199–208 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Mathieu, L. et al. Architecture and properties of anisotropic polymer composite scaffolds for bone tissue engineering. Biomaterials27, 905–916 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Villora, J. M., Callejas, P. & Barba, M. F. Métodos de síntesis y comportamiento térmico del Hidroxiapatito. Boletín la Soc. Española Cerámica y Vidr.41, 443–450 (2002).

  • 29.

    Zyman, Z., Glushko, V., Filippenko, V., Radchenko, V. & Mezentsev, V. Nonstoichiometric hydroxyapatite granules for orthopaedic applications. J. Mater. Sci. Mater. Med.15, 551–558 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Rodríguez, M., R. J., Morales, J. G., Clemente, R. R. & Folá, F. B. Biomaterial de restauración ósea. Rev. Cuba. Investig. Biomed.18, 203–207 (1999).

  • 31.

    Vallecillo, M, Romero, N. & Pardo, A. La hidroxiapatita en reconstrucción de defectos óseos de los maxilares: estudio y seguimiento de 15 casos clínicos. Rev COE4, 137–143 (1999).

  • 32.

    Jeon, Y. J., Shahidi, F. & Kim, S. K. Preparation of chitin and chitosan oligomers and their application in physiological functional foods. Food Rev. Int.16, 159–176 (2000).

    CAS 

    Google Scholar
     

  • 33.

    Salerno, A., Zeppetelli, S., di Maio, E., Iannace, S. & Netti, P. A. Novel 3D porous multi-phase composite scaffolds based on PCL, thermoplastic zein and ha prepared via supercritical CO2 foaming for bone regeneration. Compos. Sci. Technol.70, 1838–1846 (2010).

    CAS 

    Google Scholar
     

  • 34.

    Jing, C. et al. Crystal morphology evolution of Ni–Co layered double hydroxide nanostructure towards high-performance biotemplate asymmetric supercapacitors. Cryst. Eng. Comm.20, 7428 (2018).

    CAS 

    Google Scholar
     

  • 35.

    Xiao, Y. et al. One-step hydrothermal synthesis of Cu-doped MnO2 coated diatomite for degradation of methylene blue in Fenton-like system. J. Coll. Inter. Sci.556, 466–475 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 36.

    Li, K. et al. Assembling a double shell on a diatomite skeleton ternary complex with conductive polypyrrole for the enhancement of supercapacitors. Chem. Commun.55, 13773 (2019).

    CAS 

    Google Scholar
     

  • 37.

    Davis, L. Diatomite. Am. Ceram. Soc. Bull.70, 860–861 (1991).


    Google Scholar
     

  • 38.

    Şan, O., Gören, R. & Özgür, C. Purification of diatomite powder by acid leaching for use in fabrication of porous ceramics. Int. J. Miner. Process.93, 6–10 (2009).


    Google Scholar
     

  • 39.

    Gordon, R., Losic, D., Tiffany, M. A., Nagy, S. S. & Sterrenburg, F. A. The glassmenagerie: diatoms for novel applications in nanotechnology. Trends Biotechnol.27, 116–127 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Bakr, H. E. G. M. Diatomite: its characterization, modifications and applications. Asian J. Mater. Sci.2, 121–136 (2010).


    Google Scholar
     

  • 41.

    Cicco, S. R. et al. Chemicallymodified diatoms biosilica for bone cell growth with combined drug-delivery and antioxidant properties. ChemPlusChem80, 1104–1112 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Li, K. et al. Tuning MnO2 to FeOOH replicas with bio-template 3D morphology as electrodes for high performance asymmetric supercapacitors. Chem. Engin. Journ.370, 136–147 (2019).

    CAS 

    Google Scholar
     

  • 43.

    Lopez-Alvarez, M. et al. Silicon–hydroxyapatite bioactive coatings (Si–HA) fromdiatomaceous earth and silica: study of adhesion and proliferation of osteoblast-like cells. J. Mater. Sci. Mater. Med.20, 1131–1136 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Le, T. D. H. et al. Processing and characterization of diatom nanoparticles and microparticles as potential source of silicon for bone tissue engineering. Mater. Sci. Eng. C59, 471–479 (2016).

    CAS 

    Google Scholar
     

  • 45.

    Kim, M. W., Kwon, S. H., Park, H. B. & Kim, K. Glass fiber and silica reinforced rigid polyurethane foams. Exp. Polym. Lett.11, 374–382 (2017).

    CAS 

    Google Scholar
     

  • 46.

    Demiroğlu, S., Erdoğan, F., Akın, E., Karavana, H.A & Seydibeyoğlu, M. Ö. Natural fiber reinforced polyurethane rigid foam. GUJ Sci30, 97–109 (2017).

  • 47.

    Ramay, H. R. & Zhang, M. Preparation of porous hydroxyapatite scaffolds by combination of the gel-casting and polymer sponge methods. Biomaterials24, 3293–3302 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • 48.

    Asefnejad, A., Behnamghader, A., Khorasani, M. T. & Farsad, B. Polyurethane/fluor-hydroxyapatite nanocomposite scaffolds for bone tissue engineering. Part I: Morphological, physical, and mechanical characterization. Int. J. Nanomed.6, 93–100 (2011).

    CAS 

    Google Scholar
     

  • 49.

    Merlatti, C., Perrin, F. X., Aragon, E. & Margaillan, A. Natural and artificial weathering characteristics of stabilized acrylic-urethane paints. Polym. Degrad. Stab.93, 896–903 (2008).

    CAS 

    Google Scholar
     

  • 50.

    Lingling, J., Huahua, X., Qingsong, W. & Jinhua, S. Thermal degradation characteristics of rigid polyurethane foam and the volatile products analysis with TG-FTIR-MS. Polym. Degrad. Stab.98, 2687–2696 (2013).


    Google Scholar
     

  • 51.

    Mishra, A. K., Chattopadhyay, D. K., Sreedhar, B. & Raju, K. V. S. N. FT-IR and XPS studies of polyurethane-urea-imide coatings. Prog. Org. Coat.55, 231–243 (2006).

    CAS 

    Google Scholar
     

  • 52.

    Bil, M., Ryszkowska, J., Roether, J. A., Bretcanu, O. & Boccaccini, A. R. Bioactivity of polyurethane-based scaffolds coated with Bioglass. Biomed Mater.2, 93–101 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 53.

    Yuan, P., Wu, D. Q., He, H. P. & Lin, Z. Y. The hydroxyl species and acid sites on diatomite surface: a combined IR and Raman study. Appl. Surf. Sci.227(1), 30–39 (2004).

    ADS 
    CAS 

    Google Scholar
     

  • 54.

    Yuan, P. et al. Surface silylation of mesoporous/macroporous diatomite (diatomaceous earth) and its function in Cu(II) adsorption: the effects of heating pretreatment. Microporous Mesoporous Mater.170, 9–19 (2013).

    CAS 

    Google Scholar
     

  • 55.

    Khraisheh, M. A., Al-Ghouti, M. A., Allen, S. J. & Ahmad, M. N. Effect of OH and silanol groups in the removal of dyes from aqueous solution using diatomite. Water Res.39, 922–932 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 56.

    Bahramian, B., Ardejani, F. D., Mirkhani, V. & Badii, K. Diatomite supported manganese Schiff base: an efficient catalyst for oxidation of hydrocarbons. Appl. Catal. A: Gen.345, 97–103 (2008).

    CAS 

    Google Scholar
     

  • 57.

    Huang, M. N., Wang, Y. L. & Luo, Y. F. Biodegradable and bioactive porous polyurethanes scaffolds for bone tissue engineering. J. Biomed. Sci. Eng.2, 36–40 (2009).

    CAS 

    Google Scholar
     

  • 58.

    Wang, L. et al. Porous bioactive scaffold of aliphatic polyurethane and hydroxyapatite for tissue regeneration. Biomed Mater.4, 025003 (2009).

    ADS 
    PubMed 

    Google Scholar
     

  • 59.

    Arsad, M.S.M., Lee, P.M. & Hung, L.K. Synthesis and Characterization of Hydroxyapatite Nanoparticles and β-TCP Particles.in 2nd International Conference on Biotechnology and Food Science IPCBEE7, (2011).

  • 60.

    Nejati, E., Firouzdor, V., Eslaminejad, M. B. & Bagheri, F. Needle-like nano hydroxyapatite/poly (L-lactide acid) composite scaffold for bone tissue engineering application. Mater. Sci. Eng., C29, 942–949 (2009).

    CAS 

    Google Scholar
     

  • 61.

    Paivaa, H., Velosa, A., Cachim, P. & Ferreira, V. M. Effect of pozzolans with different physical and chemical characteristics on concrete properties. Mater. Constr.66(322), 83 (2016).


    Google Scholar
     

  • 62.

    Sun, Z., Yang, X., Zhang, G., Zheng, S. & Frost, R. L. A novel method for purification of low-grade diatomite powders in centrifugal fields. Int. J. Miner. Process.125, 18–26 (2013).

    CAS 

    Google Scholar
     

  • 63.

    Wenbin, Y. et al. Facile preparation of hierarchically porous diatomite/MFI-type zeolite composites and their performance of benzene adsorption: the effects of NaOH etching pretreatment. J. Hazard. Mater.285, 173–181 (2015).

    ADS 

    Google Scholar
     

  • 64.

    Mendioroz, S., Belzunce, M. J. & Pajares, J. A. Thermogravimetric study of diatomites. J. Therm. Anal.35, 2097–2104 (1989).

    CAS 

    Google Scholar
     

  • 65.

    Gültürk, E. A., Güden, M. & Tasdemirci, A. Calcined and natural frustules filled epoxy matrices: the effect of volume fraction on the tensile and compression behavior. Compos. B44, 491–500 (2013).


    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *