Schirmer, A. & Adolphs, R. Emotion perception from face, voice, and touch: comparisons and convergence. Trends Cognit. Sci. 21, 216–228. https://doi.org/10.1016/j.tics.2017.01.001 (2017).
Ekman, P. & Friesen, W. V. Pictures of Facial Affect (Consulting Psychological Press, Palo Alto, CA, 1976).
Bartlett, M. S. et al. Classifying facial action. IEEE Trans. Pattern Anal. Mach. Intell. 21, 974–989 (1996).
Ekman, P. An argument for basic emotions. Cognit. Emot. 6, 169–200. https://doi.org/10.1080/02699939208411068 (1992).
Schröder, M. Experimental study of affect bursts. Speech Commun. 40, 99–116. https://doi.org/10.1016/S0167-6393(02)00078-X (2003).
Grandjean, D. et al. The voices of wrath: brain responses to angry prosody in meaningless speech. Nat. Neurosci. 8, 145–146. https://doi.org/10.1038/nn1392 (2005).
Belin, P., Fillion-Bilodeau, S. & Gosselin, F. The montreal affective voices: a validated set of nonverbal affect bursts for research on auditory affective processing. Behav. Res. Methods 40, 531–539. https://doi.org/10.3758/BRM.40.2.53 (2008).
Patel, S., Scherer, K. R., Björkner, E. & Sundberg, J. Mapping emotions into acoustic space: the role of voice production. Biol. Psychol. 87, 93–98. https://doi.org/10.1016/j.biopsycho.2011.02.010 (2011).
Adolphs, R. Recognizing emotion from facial expressions: psychological and neurological mechanisms. Behav. Cognit. Neurosci. Rev. 1, 21–62. https://doi.org/10.1177/1534582302001001003 (2002).
Leppänen, J. M. & Nelson, C. A. Tuning the developing brain to social signals of emotions. Nat. Rev. Neurosci. 10, 37–47. https://doi.org/10.1038/nrn2554 (2009).
Haxby, J. V., Hoffman, E. A. & Gobbini, M. I. The distributed human neural system for face perception. Trends Cognit. Sci. 4, 223–233. https://doi.org/10.1016/S1364-6613(00)01482-0 (2000).
Winston, J. S., Vuilleumier, P. & Dolan, R. J. Effects of low-spatial frequency components of fearful faces on fusiform cortex activity. Curr. Biol. 13, 1824–1829. https://doi.org/10.1016/j.cub.2003.09.038 (2003).
Rotshtein, P., Henson, R. N. A., Treves, A., Driver, J. & Dolan, R. J. Morphing Marilyn into Maggie dissociates physical and identity face representations in the brain. Nat. Neurosci. 8, 107–113. https://doi.org/10.1016/j.tics.2017.01.0011 (2005).
Fox, C. J., Moon, S. Y., Iaria, G. & Barton, J. J. S. The correlates of subjective perception of identity and expression in the face network: an fMRI adaptation study. NeuroImage 44, 569–580. https://doi.org/10.1016/j.tics.2017.01.0012 (2009).
De Winter, F.-L. et al. Lateralization for dynamic facial expressions in human superior temporal sulcus. NeuroImage 106, 340–352. https://doi.org/10.1016/j.tics.2017.01.0013 (2015).
Hoffman, E. A. & Haxby, J. V. Distinct representations of eye gaze and identity in the distributed human neural system for face perception. Nat. Neurosci. 3, 80–84. https://doi.org/10.1016/j.tics.2017.01.0014 (2000).
Yang, D.Y.-J., Rosenblau, G., Keifer, C. & Pelphrey, K. A. An integrative neural model of social perception, action observation, and theory of mind. Neurosci. Biobehav. Rev. 51, 263–275. https://doi.org/10.1016/j.tics.2017.01.0015 (2015).
Calvert, G. A. et al. Activation of auditory cortex during silent lipreading. Science (New York, N.Y.) 276, 593–596 (1997).
Ross, E. D. & Monnot, M. Neurology of affective prosody and its functional-anatomic organization in right hemisphere. Brain Lang. 104, 51–74. https://doi.org/10.1016/j.tics.2017.01.0016 (2008).
Gorelick, P. B. & Ross, E. D. The aprosodias: further functional-anatomical evidence for the organisation of affective language in the right hemisphere. J. Neurol. Neurosurg. Psychiatry 50, 553–560 (1987).
Belin, P., Zatorre, R. J. & Ahad, P. Human temporal-lobe response to vocal sounds. Brain Res. Cognit. Brain Res. 13, 17–26. https://doi.org/10.1016/S0926-6410(01)00084-2 (2002).
Kriegstein, K. V. & Giraud, A.-L. Distinct functional substrates along the right superior temporal sulcus for the processing of voices. NeuroImage 22, 948–955. https://doi.org/10.1016/j.tics.2017.01.0018 (2004).
Ethofer, T., Van De Ville, D., Scherer, K. & Vuilleumier, P. Decoding of emotional information in voice-sensitive cortices. Curr. Biol. CB 19, 1028–1033. https://doi.org/10.1016/j.cub.2009.04.054 (2009).
Johnstone, T., van Reekum, C. M., Oakes, T. R. & Davidson, R. J. The voice of emotion: an FMRI study of neural responses to angry and happy vocal expressions. Soc. Cognit. Affect. Neurosci. 1, 242–249. https://doi.org/10.1093/scan/nsl027 (2006).
Schirmer, A. & Kotz, S. A. Beyond the right hemisphere: brain mechanisms mediating vocal emotional processing. Trends Cognit. Sci. 10, 24–30. https://doi.org/10.1016/j.tics.2005.11.009 (2006).
Belin, P., Fecteau, S. & Bédard, C. Thinking the voice: neural correlates of voice perception. Trends Cognit. Sci. 8, 129–135. https://doi.org/10.1016/j.tics.2004.01.008 (2004).
Wright, T. M., Pelphrey, K. A., Allison, T., McKeown, M. J. & McCarthy, G. Polysensory interactions along lateral temporal regions evoked by audiovisual speech. Cereb. Cortex (New York, N.Y.: 1991) 13, 1034–1043. https://doi.org/10.1093/cercor/13.10.1034 (2003).
Beauchamp, M. S., Argall, B. D., Bodurka, J., Duyn, J. H. & Martin, A. Unraveling multisensory integration: patchy organization within human STS multisensory cortex. Nat. Neurosci. 7, 1190–1192. https://doi.org/10.1080/026999392084110684 (2004).
Vuilleumier, P. & Pourtois, G. Distributed and interactive brain mechanisms during emotion face perception: evidence from functional neuroimaging. Neuropsychologia 45, 174–194. https://doi.org/10.1080/026999392084110685 (2007).
Massaro, D. W. & Egan, P. B. Perceiving affect from the voice and the face. Psychon. Bull. Rev. 3, 215–221. https://doi.org/10.3758/BF03212421 (1996).
de Gelder, B. & Vroomen, J. The perception of emotions by ear and by eye. Cognit. Emot. 14, 289–311. https://doi.org/10.1080/026999300378824 (2000).
Kreifelts, B., Ethofer, T., Grodd, W., Erb, M. & Wildgruber, D. Audiovisual integration of emotional signals in voice and face: an event-related fMRI study. NeuroImage 37, 1445–1456. https://doi.org/10.1080/026999392084110688 (2007).
Peelen, M. V., Atkinson, A. P. & Vuilleumier, P. Supramodal representations of perceived emotions in the human brain. J. Neurosci. 30, 10127–10134. https://doi.org/10.1523/JNEUROSCI.2161-10.2010 (2010).
Watson, R. et al. Dissociating task difficulty from incongruence in face-voice emotion integration. Front. Hum. Neurosci. 7, 744. https://doi.org/10.3389/fnhum.2013.00744 (2013).
Davidson, R. J. Cerebral Asymmetry, Emotion, and Affective Style. In Brain asymmetry, 361–387 (The MIT Press, Cambridge, MA, US, 1995).
Carter, R. M. & Huettel, S. A. A nexus model of the temporal-parietal junction. Trends Cognit. Sci. 17, 328–336. https://doi.org/10.1016/j.tics.2013.05.007 (2013).
Amodio, D. M. & Frith, C. D. Meeting of minds: the medial frontal cortex and social cognition. Nat. Rev. Neurosci. 7, 268–277. https://doi.org/10.1016/S0167-6393(02)00078-X2 (2006).
Keysers, C. & Gazzola, V. Integrating simulation and theory of mind: from self to social cognition. Trends Cognit. Sci. 11, 194–196. https://doi.org/10.1016/j.tics.2007.02.002 (2007).
Hess, U. & Fischer, A. Emotional mimicry: why and when we mimic emotions—emotional mimicry. Soc. Pers. Psychol. Compass 8, 45–57. https://doi.org/10.1111/spc3.12083 (2014).
Ross, E. D. Right hemispheres role in language, affective behavior and emotion. Trends Neurosci. 7, 342–346. https://doi.org/10.1016/S0167-6393(02)00078-X5 (1984).
Blair, R. J. R. Impaired social response reversal: a case of acquired sociopathy. Brain 123, 1122–1141. https://doi.org/10.1093/brain/123.6.1122 (2000).
Bailey, P. E., Henry, J. D. & Varcin, K. J. Right frontal cortical lesions disrupt anger mimicry. Neuropsychologia 50, 1632–1638. https://doi.org/10.1016/S0167-6393(02)00078-X7 (2012).
Schmidt, K. L. & Cohn, J. F. Human facial expressions as adaptations: evolutionary questions in facial expression research. Am. J. Phys. Anthropol. Suppl 33, 3–24 (2001).
Cannon, P. R., Hayes, A. E. & Tipper, S. P. An electromyographic investigation of the impact of task relevance on facial mimicry. Cognit. Emot. 23, 918–929. https://doi.org/10.1080/02699930802234864 (2009).
Hatfield, E., Cacioppo, J. T. & Rapson, R. L. Emotional contagion. Studies in emotion and social interaction (Cambridge University Press ; Editions de la Maison des sciences de l’homme, Cambridge [England] ; New York : Paris, 1994).
Seidel, E.-M., Habel, U., Kirschner, M., Gur, R. C. & Derntl, B. The impact of facial emotional expressions on behavioral tendencies in women and men. J. Exp. Psychol. Hum. Percept. Perform. 36, 500–507. https://doi.org/10.1016/S0167-6393(02)00078-X9 (2010).
Pourtois, G., de Gelder, B., Vroomen, J., Rossion, B. & Crommelinck, M. The time-course of intermodal binding between seeing and hearing affective information. NeuroReport 11, 1329–1333. https://doi.org/10.1038/nn13920 (2000).
Klasen, M., Chen, Y.-H. & Mathiak, K. Multisensory emotions: perception, combination and underlying neural processes. Rev. Neurosci.https://doi.org/10.1515/revneuro-2012-0040 (2012).
Gerdes, A. B. M., Wieser, M. J. & Alpers, G. W. Emotional pictures and sounds: a review of multimodal interactions of emotion cues in multiple domains. Front. Psychol. 5, 1351. https://doi.org/10.3389/fpsyg.2014.01351 (2014).
Korb, S., Frühholz, S. & Grandjean, D. Reappraising the voices of wrath. Soc. Cognit. Affect. Neurosci. 10, 1644–1660. https://doi.org/10.1093/scan/nsv051 (2015).
King, A. J. & Nelken, I. Unraveling the principles of auditory cortical processing: can we learn from the visual system?. Nat. Neurosci. 12, 698–701. https://doi.org/10.1038/nn13923 (2009).
Borod, J. C. et al. Relationships among facial, prosodic, and lexical channels of emotional perceptual processing. Cognit. Emot. 14, 193–211. https://doi.org/10.1080/026999300378932 (2000).
Frühholz, S. & Grandjean, D. Multiple subregions in superior temporal cortex are differentially sensitive to vocal expressions: a quantitative meta-analysis. Neurosci. Biobehav. Rev. 37, 24–35. https://doi.org/10.1038/nn13925 (2013).
Balconi, M. & Vanutelli, M. E. Hemodynamic (fNIRS) and EEG (N200) correlates of emotional inter-species interactions modulated by visual and auditory stimulation. Sci. Rep. 6, 23083. https://doi.org/10.1038/srep23083 (2016).
Köchel, A. et al. Affective perception and imagery: a NIRS study. Int. J. Psychophysiol. 80, 192–197. https://doi.org/10.1016/j.ijpsycho.2011.03.006 (2011).
Plichta, M. et al. Event-related functional near-infrared spectroscopy (fNIRS): are the measurements reliable?. NeuroImage 31, 116–124. https://doi.org/10.1016/j.neuroimage.2005.12.008 (2006).
Zhang, D., Zhou, Y. & Yuan, J. Speech prosodies of different emotional categories activate different brain regions in adult cortex: an fNIRS study. Sci. Rep.https://doi.org/10.1038/s41598-017-18683-2 (2018).
Yuvaraj, R., Murugappan, M., Norlinah, M. I., Sundaraj, K. & Khairiyah, M. Review of emotion recognition in stroke patients. Dement. Geriatr. Cogn. Disord. 36, 179–196. https://doi.org/10.1159/000353440 (2013).
Brancucci, A., Lucci, G., Mazzatenta, A. & Tommasi, L. Asymmetries of the human social brain in the visual, auditory and chemical modalities. Philos. Trans. R. Soc. B Biol. Sci. 364, 895–914. https://doi.org/10.1098/rstb.2008.0279 (2009).
Harciarek, M., Heilman, K. M. & Jodzio, K. Defective comprehension of emotional faces and prosody as a result of right hemisphere stroke: modality versus emotion-type specificity. J. Int. Neuropsychol. Soc. 12, 774–781. https://doi.org/10.3758/BRM.40.2.531 (2006).
Adolphs, R., Jansari, A. & Tranel, D. Hemispheric perception of emotional valence from facial expressions. Neuropsychology 15, 516–524. https://doi.org/10.3758/BRM.40.2.532 (2001).
Adolphs, R., Tranel, D. & Damasio, A. R. Dissociable neural systems for recognizing emotions. Brain Cogn. 52, 61–69. https://doi.org/10.3758/BRM.40.2.533 (2003).
Capilla, A., Belin, P. & Gross, J. The early spatio-temporal correlates and task independence of cerebral voice processing studied with MEG. Cereb. Cortex 23, 1388–1395. https://doi.org/10.1093/cercor/bhs119 (2013).
Stevenson, R. A. et al. Multisensory temporal integration in autism spectrum disorders. J. Neurosci. 34, 691–697. https://doi.org/10.1523/JNEUROSCI.3615-13.2014 (2014).
Dionne-Dostie, E., Paquette, N., Lassonde, M. & Gallagher, A. Multisensory integration and child neurodevelopment. Brain Sci. 5, 32–57. https://doi.org/10.3390/brainsci5010032 (2015).
Ferrari, M. & Quaresima, V. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. NeuroImage 63, 921–935. https://doi.org/10.3758/BRM.40.2.537 (2012).
Shekhar, S. et al. Hemodynamic responses to emotional speech in two-month-old infants imaged using diffuse optical tomography. Sci. Rep.https://doi.org/10.1038/s41598-019-39993-7 (2019).
Anderson, A. W., Marois, R., Colson, Peterson, B. . S. & Dun, C. . C. Neonatal auditory activation detected by functional magnetic resonance imaging. Magn. Reson. Imaging 19, 1–5. https://doi.org/10.3758/BRM.40.2.538 (2001).
Doi, H., Nishitani, S. & Shinohara, K. NIRS as a tool for assaying emotional function in the prefrontal cortex. Front. Hum. Neurosci.https://doi.org/10.3389/fnhum.2013.00770 (2013).
Bendall, R. C. A., Eachus, P. & Thompson, C. A brief review of research using near-infrared spectroscopy to measure activation of the prefrontal cortex during emotional processing: the importance of experimental design. Front. Hum. Neurosci.https://doi.org/10.3389/fnhum.2016.00529 (2016).
Tottenham, N. et al. The NimStim set of facial expressions: Judgments from untrained research participants. Psychiatry Res. 168, 242–249. https://doi.org/10.3758/BRM.40.2.539 (2009).
Tiddeman, B., Burt, M. & Perrett, D. Prototyping and transforming facial textures for perception research. IEEE Comput. Graphics Appl. 21, 42–50. https://doi.org/10.1016/j.biopsycho.2011.02.0100 (2001).
Tiddeman, B. & Perrett, D. Transformation of dynamic facial image sequences using static 2d prototypes. Vis. Comput. 18, 218–225. https://doi.org/10.1007/s003710100142 (2002).
Scholkmann, F. et al. A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. NeuroImage 85, 6–27. https://doi.org/10.1016/j.biopsycho.2011.02.0102 (2014).
Tak, S., Uga, M., Flandin, G., Dan, I. & Penny, W. Sensor space group analysis for fNIRS data. J. Neurosci. Methods 264, 103–112. https://doi.org/10.1016/j.biopsycho.2011.02.0103 (2016).
Scholkmann, F., Spichtig, S., Muehlemann, T. & Wolf, M. How to detect and reduce movement artifacts in near-infrared imaging using moving standard deviation and spline interpolation. Physiol. Meas. 31, 649–662. https://doi.org/10.1016/j.biopsycho.2011.02.0104 (2010).