CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Cowan, N. Metatheory of storage capacity limits. Behav. Brain Sci. 24, 154–176 (2001).


    Google Scholar
     

  • 2.

    Luck, S. J. & Vogel, E. K. Visual working memory capacity: from psychophysics and neurobiology to individual differences. Trends Cogn. Sci. 17, 391–400 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Baddeley, A. Working memory: looking back and looking forward. Nat. Rev. Neurosci. 4, 829–839 (2003).

    CAS 

    Google Scholar
     

  • 4.

    Ma, W. J., Husain, M. & Bays, P. M.Changing concepts of working memory. Nat. Neurosci. 17, 347–356 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Fukuda, K., Vogel, E., Mayr, U. & Awh, E. Quantity, not quality: the relationship between fluid intelligence and working memory capacity. Psychonomic Bull. Rev. 17, 673–679 (2010).


    Google Scholar
     

  • 6.

    Alloway, T. P. & Alloway, R. G. Investigating the predictive roles of working memory and IQ in academic attainment. J. Exp. Child Psychol. 106, 20–29 (2010).


    Google Scholar
     

  • 7.

    Zhang, W. & Luck, S. J.Discrete fixed-resolution representations in visual working memory. Nature 453, 233–235 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Van den Berg, R., Shin, H., Chou, W. C., George, R. & Ma, W. J. Variability in encoding precision accounts for visual short-term memory limitations. Proc. Natl Acad. Sci. USA 109, 8780–8785 (2012).

    CAS 

    Google Scholar
     

  • 9.

    Bays, P. M. Noise in neural populations accounts for errors in working memory. J. Neurosci. 34, 3632–3645 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Bays, P. M. Spikes not slots: noise in neural populations limits working memory. Trends Cogn. Sci. 19, 431–438 (2015).


    Google Scholar
     

  • 11.

    Serences, J. T. Neural mechanisms of information storage in visual short-term memory. Vis. Res. 128, 53–67 (2016).


    Google Scholar
     

  • 12.

    Bae, G. Y., Olkkonen, M., Allred, S. R., Wilson, C. & Flombaum, J. I. Stimulus-specific variability in color working memory with delayed estimation. J. Vision 14, 7 (2014).


    Google Scholar
     

  • 13.

    Allred, S. R. & Flombaum, J. I. Relating color working memory and color perception. Trends Cogn. Sci. 18, 562–565 (2014).


    Google Scholar
     

  • 14.

    Pratte, M. S., Park, Y. E., Rademaker, R. L. & Tong, F.Accounting for stimulus-specific variation in precision reveals a discrete capacity limit in visual working memory. J. Exp. Psychol. Hum. Percept. Perform. 43, 6–17 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Torgerson, W. S. Theory and Methods of Scaling (Wiley, 1958).

  • 16.

    Maloney, L. T. & Yang, J. N. Maximum likelihood difference scaling. J. Vision 3, 5 (2003).


    Google Scholar
     

  • 17.

    Shepard, R. N. Toward a universal law of generalization for psychological science. Science 237, 1317–1323 (1987).

    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Sims, C. R. Efficient coding explains the universal law of generalization in human perception. Science 360, 652–656 (2018).

    CAS 

    Google Scholar
     

  • 19.

    Nosofsky, R. M. Similarity scaling and cognitive process models. Annu. Rev. Psychol. 43, 25–53 (1992).


    Google Scholar
     

  • 20.

    Tanner, W. P.Jr & Swets, J. A.A decision-making theory of visual detection. Psychol. Rev. 61, 401–409 (1954).


    Google Scholar
     

  • 21.

    Macmillan, N. A. & Creelman, C. D. Detection Theory: A User’s Guide 2nd edn (Erlbaum, 2005).

  • 22.

    Wilken, P. & Ma, W. J. A detection theory account of change detection. J. Vision 4, 11 (2004).


    Google Scholar
     

  • 23.

    Fougnie, D., Suchow, J. W. & Alvarez, G. A. Variability in the quality of visual working memory. Nat. Commun. 3, 1229 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Loftus, G. R. & Bamber, D. Weak models, strong models, unidimensional models, and psychological time. J. Exp. Psychol. Learn. Mem. Cogn. 16, 16–19 (1990).


    Google Scholar
     

  • 25.

    Smith, P. L., Lilburn, S. D., Corbett, E. A., Sewell, D. K. & Kyllingsbæk, S. The attention-weighted sample-size model of visual short-term memory: attention capture predicts resource allocation and memory load. Cogn. Psychol. 89, 71–105 (2016).


    Google Scholar
     

  • 26.

    Bays, P. M., Catalao, R. F. & Husain, M. The precision of visual working memory is set by allocation of a shared resource. J. Vision 9, 7 (2009).


    Google Scholar
     

  • 27.

    Roberts, S. & Pashler, H.How persuasive is a good fit? A comment on theory testing. Psychol. Rev. 107, 358–367 (2000).

    CAS 

    Google Scholar
     

  • 28.

    Kahana, M. J. & Sekuler, R. Recognizing spatial patterns: a noisy exemplar approach. Vis. Res. 42, 2177–2192 (2002).


    Google Scholar
     

  • 29.

    Gold, J. M., Wilk, C. M., McMahon, R. P., Buchanan, R. W. & Luck, S. J.Working memory for visual features and conjunctions in schizophrenia. J. Abnorm. Psychol. 112, 61–71 (2003).


    Google Scholar
     

  • 30.

    Haberman, J., Brady, T. F. & Alvarez, G. A.Individual differences in ensemble perception reveal multiple, independent levels of ensemble representation. J. Exp. Psychol. Gen. 144, 432–446 (2015).


    Google Scholar
     

  • 31.

    Miner, A. E., Schurgin, M. W. & Brady, T. F. Is working memory inherently more ‘precise’ than long-term memory? Extremely high fidelity visual long-term memories for frequently encountered objects. J. Exp. Psychol. Human Percept. Perform. 46, 813 (2020).


    Google Scholar
     

  • 32.

    Brady, T. F., Konkle, T., Gill, J., Oliva, A. & Alvarez, G. A. Visual long-term memory has the same limit on fidelity as visual working memory. Psychol. Sci. 24, 981–990 (2013).


    Google Scholar
     

  • 33.

    Asplund, C. L., Fougnie, D., Zughni, S., Martin, J. W. & Marois, R. The attentional blink reveals the probabilistic nature of discrete conscious perception. Psychol. Sci. 25, 824–831 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Pratte, M. S. Iconic memories die a sudden death. Psychol. Sci. 29, 877–887 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 35.

    Richter, F. R., Cooper, R. A., Bays, P. M. & Simons, J. S.Distinct neural mechanisms underlie the success, precision, and vividness of episodic memory. eLife 5, e18260 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Dunn, J. C. & Kalish, M. L. State–Trace Analysis (Springer, 2018).

  • 37.

    Zokaei, N. et al. Visual short-term memory deficits associated with GBA mutation and Parkinson’s disease. Brain 137, 2303–2311 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Rolinski, M. et al. Visual short-term memory deficits in REM sleep behaviour disorder mirror those in Parkinson’s disease. Brain 139, 47–53 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Pertzov, Y. et al. Binding deficits in memory following medial temporal lobe damage in patients with voltage-gated potassium channel complex antibody-associated limbic encephalitis. Brain 136, 2474–2485 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Brady, T. F. & Alvarez, G. A. Hierarchical encoding in visual working memory: ensemble statistics bias memory for individual items. Psychol. Sci. 22, 384–392 (2011).


    Google Scholar
     

  • 41.

    Brady, T. F. & Alvarez, G. A. Contextual effects in visual working memory reveal hierarchically structured memory representations. J. Vision 15, 6 (2015).


    Google Scholar
     

  • 42.

    Williams, J., Brady, T. & Störmer, V. S. Guidance of attention by working memory is a matter of representational fidelity, not a privileged status for one or more items. Preprint at PsyArXiv https://doi.org/10.31234/osf.io/c4t92 (2019).

  • 43.

    Henson, R. N. A., Rugg, M. D., Shallice, T. & Dolan, R. J. Confidence in recognition memory for words: dissociating right prefrontal roles in episodic retrieval. J. Cogn. Neurosci. 12, 913–923 (2000).

    CAS 

    Google Scholar
     

  • 44.

    Rutishauser, U. et al. Representation of retrieval confidence by single neurons in the human medial temporal lobe. Nat. Neurosci. 18, 1041–1050 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Marr, D. Vision: A Computational Investigation Into the Human Representation and Processing of Visual Information (Henry Holt and Company, 1982).

  • 46.

    Bays, P. M. Correspondence between population coding and psychophysical scaling models of working memory. Preprint at BioRxiv https://doi.org/10.1101/699884 (2019).

  • 47.

    Wei, X. X. & Stocker, A. A.A Bayesian observer model constrained by efficient coding can explain ‘anti-Bayesian’ percepts. Nat. Neurosci. 18, 1509–1517 (2015).

    CAS 

    Google Scholar
     

  • 48.

    Wei, X. X. & Stocker, A. A. Lawful relation between perceptual bias and discriminability. Proc. Natl Acad. Sci. USA 114, 10244–10249 (2017).

    CAS 

    Google Scholar
     

  • 49.

    Krauskopf, J. & Gegenfurtner, K. R. Color discrimination and adaptation. Vis. Res. 32, 2165–2175 (1992).

    CAS 

    Google Scholar
     

  • 50.

    Giesel, M., Hansen, T. & Gegenfurtner, K. R. The discrimination of chromatic textures. J. Vision 9, 11 (2009).


    Google Scholar
     

  • 51.

    Rademaker, R. L., Tredway, C. H. & Tong, F. Introspective judgments predict the precision and likelihood of successful maintenance of visual working memory. J. Vision 12, 21 (2012).


    Google Scholar
     

  • 52.

    Wixted, J. T. & Wells, G. L.The relationship between eyewitness confidence and identification accuracy: a new synthesis. Psychol. Sci. Public Interest 18, 10–65 (2017).


    Google Scholar
     

  • 53.

    Fougnie, D., Brady, T. F. & Alvarez, G. A. If at first you don’t retrieve, try, try again: the role of retrieval failures in visual working memory. J. Vis. 14, 851–851 (2014).


    Google Scholar
     

  • 54.

    Difallah, D., Filatova, E. & Ipeirotis, P. Demographics and dynamics of mechanical Turk workers. In Proceedings of the Eleventh ACM International Conference on Web Search and Data Mining 135–143 (ACM, 2018).

  • 55.

    Brady, T. F. & Tenenbaum, J. B.A probabilistic model of visual working memory: incorporating higher order regularities into working memory capacity estimates. Psychol. Rev. 120, 85–109 (2013).


    Google Scholar
     

  • 56.

    Nadarajah, S., Afuecheta, E. & Chan, S. On the distribution of maximum of multivariate normal random vectors. Commun. Stat. Theory Methods 48, 2425–2445 (2019).


    Google Scholar
     

  • 57.

    Fougnie, D., Asplund, C. L. & Marois, R. What are the units of storage in visual working memory? J. Vision 10, 27 (2010).


    Google Scholar
     

  • 58.

    Suchow, J. W., Brady, T. F., Fougnie, D. & Alvarez, G. A. Modeling visual working memory with the MemToolbox. J. Vision 13, 9 (2013).


    Google Scholar
     

  • 59.

    Myung, J. I. & Pitt, M. A. in Stevens Handbook of Experimental Psychology and Cognitive Neuroscience 4th edn, Vol. 5 (eds Wixted, J. & Wagenmakers, E.-J.) 85–118 (John Wiley & Sons, 2018).

  • 60.

    Brady, T. F., Konkle, T., Alvarez, G. A. & Oliva, A. Visual long-term memory has a massive storage capacity for object details. Proc. Natl Acad. Sci. USA 105, 14325–14329 (2008).

    CAS 

    Google Scholar
     

  • 61.

    Wixted, J. T. & Mickes, L.A continuous dual-process model of remember/know judgments. Psychol. Rev. 117, 1025–1054 (2010).


    Google Scholar
     

  • 62.

    Rohatgi, A. WebPlotDigitizer (2011); https://automeris.io/WebPlotDigitizer/

  • 63.

    Thurstone, L. L. A law of comparative judgment. Psychol. Rev. 34, 273–286 (1927).


    Google Scholar
     

  • 64.

    Rotello, C. M. in Learning and Memory: A Comprehensive Reference 2nd edn, Vol. 2 (eds Byrne, J. H. & Wixted, J. T.) 201–226 (Elsevier, 2017).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *