CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Onsager, L. Interpretation of the de Haas–van Alphen effect. Philos. Mag. 43, 1006–1008 (1952).


    Google Scholar
     

  • 2.

    Roth, L. M. Semiclassical theory of magnetic energy levels and magnetic susceptibility of Bloch electrons. Phys. Rev. 145, 434–448 (1966).

    ADS 
    CAS 

    Google Scholar
     

  • 3.

    Mikitik, G. P. et al. Manifestation of Berry’s phase in metal physics. Phys. Rev. Lett. 82, 2147–2150 (1999).

    ADS 
    CAS 

    Google Scholar
     

  • 4.

    Gao, Y. & Niu, Q. Zero-field magnetic response functions in Landau levels. Proc. Natl Acad. Sci. USA 114, 7295–7300 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 5.

    Fuchs, J.-N. et al. Landau levels, response functions and magnetic oscillations from a generalized onsager relation. SciPost Phys. 4, 024 (2018).

    ADS 

    Google Scholar
     

  • 6.

    Zhang, Y. et al. Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005).

    ADS 
    CAS 

    Google Scholar
     

  • 7.

    Novoselov, K. S. et al. Unconventional quantum Hall effect and Berry’s phase of 2π in bilayer graphene. Nat. Phys. 2, 177–180 (2006).


    Google Scholar
     

  • 8.

    Rhim, J.-W. & Yang, B.-J. Classification of flat bands according to the band-crossing singularities of Bloch wave functions. Phys. Rev. B 99, 045107 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 9.

    Bužek, V. & Hillery, M. Quantum copying: beyond the no-cloning theorem. Phys. Rev. A 54, 1844–1852 (1996).

    ADS 
    MathSciNet 

    Google Scholar
     

  • 10.

    Dodonov, V. V. et al. Hilbert–Schmidt distance and non-classicality of states in quantum optics. J. Mod. Opt. 47, 633–654 (2000).

    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • 11.

    Berry, M. V. in Geometric Phases in Physics (eds Shapere, A. & Wilczek, F.) 7–28 (World Scientific, 1989).

  • 12.

    Haldane, F. D. M. Dirac-point models: Hilbert space geometry and topology http://wwwphy.princeton.edu/~haldane/talks/nobel_jpeg.pdf (2010).

  • 13.

    Neupert, T. et al. Measuring the quantum geometry of Bloch bands with current noise. Phys. Rev. B 87, 245103 (2013).

    ADS 

    Google Scholar
     

  • 14.

    Peotta, S. et al. Superfluidity in topologically nontrivial flat bands. Nat. Commun. 6, 8944 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Piéchon, F. et al. Geometric orbital susceptibility: quantum metric without Berry curvature. Phys. Rev. B 94, 134423 (2016).

    ADS 

    Google Scholar
     

  • 16.

    Gianfrate, A. et al. Measurement of the quantum geometric tensor and of the anomalous Hall drift. Nature 578, 381–385 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Ozawa T. & Goldman N. Extracting the quantum metric tensor through periodic driving. Phys. Rev. B 97, 201117 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 18.

    Park, S. & Yang, B.-J. Classification of accidental band crossings and emergent semimetals in two dimensional noncentrosymmetric systems. Phys. Rev. B 96, 125127 (2017).

    ADS 

    Google Scholar
     

  • 19.

    Yang, B.-J. & Nagaosa, N. Classification of stable three-dimensional Dirac semimetals with nontrivial topology. Nat. Commun. 5, 4898 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 20.

    Xiao, Y. et al. Landau levels in the case of two degenerate coupled bands: kagome lattice tight-binding spectrum. Phys. Rev. B 67, 104505 (2003).

    ADS 

    Google Scholar
     

  • 21.

    Yamada M. G. et al. First-principles design of a half-filled flat band of the kagome lattice in two-dimensional metal–organic frameworks. Phys. Rev. B 94, 081102 (2016).

    ADS 

    Google Scholar
     

  • 22.

    Chen, Y. et al. Ferromagnetism and Wigner crystallization in kagome graphene and related structures. Phys. Rev. B 98, 035135 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 23.

    You, J.-Y. et al. Flat band and hole-induced ferromagnetism in a novel carbon monolayer. Sci. Rep. 9, 20116 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Lee, J. M. et al. Stable flatbands, topology, and superconductivity of magic honeycomb networks. Phys. Rev. Lett. 124, 137002 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 25.

    Ye, L. et al. Massive Dirac fermions in a ferromagnetic kagome metal. Nature 555, 638–642 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 26.

    Lin, Z. et al. Flatbands and emergent ferromagnetic ordering in Fe3Sn2 kagome lattices. Phys. Rev. Lett. 121, 096401 (2018).

    ADS 
    PubMed 

    Google Scholar
     

  • 27.

    Kang, M. et al. Dirac fermions and flat bands in the ideal kagome metal FeSn. Nat. Mater. 19, 163–169 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 28.

    Kang, M. et al. Topological flat bands in frustrated kagome lattice CoSn. Preprint at https://arxiv.org/abs/2002.01452 (2020).

  • 29.

    Li, Z. et al. Realization of flat band with possible nontrivial topology in electronic kagome lattice. Sci. Adv. 4, eaau4511 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Yin, J.-X. et al. Negative flat band magnetism in a spin–orbit-coupled correlated kagome magnet. Nat. Phys. 15, 443–448 (2019).

    CAS 

    Google Scholar
     

  • 31.

    Min, H. et al. Intrinsic and Rashba spin–orbit interactions in graphene sheets. Phys. Rev. B 74, 165310 (2006).

    ADS 

    Google Scholar
     

  • 32.

    Ramachandran A. et al. Chiral flat bands: existence, engineering, and stability. Phys. Rev. B 96, 161104 (2017).

    ADS 

    Google Scholar
     

  • 33.

    Ihn, T. Semiconductor Nanostructures: Quantum States and Electronic Transport (Oxford Univ. Press, 2010).

  • 34.

    Terashima, T. T. et al. Magnetization process of the Kondo insulator YbB12 in ultrahigh magnetic fields. J. Phys. Soc. Jpn. 86, 054710 (2017).

    ADS 

    Google Scholar
     

  • 35.

    Mayorov, A. S. et al. Micrometer-scale ballistic transport in encapsulated graphene at room temperature. Nano Lett. 11, 2396–2399 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • 36.

    Stoner, E. Atomic moments in ferromagnetic metals and alloys with nonferromagnetic elements. Phil. Mag. 15, 1018–1034 (1933).

    CAS 

    Google Scholar
     

  • 37.

    Kopnin N. P. et al. High-temperature surface superconductivity in topological flat-band systems. Phys. Rev. B 83, 220503 (2011).

    ADS 

    Google Scholar
     

  • 38.

    Hanaguri T. et al. Momentum-resolved Landau-level spectroscopy of Dirac surface state in Bi2Se3. Phys. Rev. B 82, 081305 (2010).

    ADS 

    Google Scholar
     

  • 39.

    Sadowski, M. L. et al. Landau level spectroscopy of ultrathin graphite layers. Phys. Rev. Lett. 97, 266405 (2006).

    ADS 
    CAS 

    Google Scholar
     

  • 40.

    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    ADS 

    Google Scholar
     

  • 41.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    ADS 
    CAS 

    Google Scholar
     

  • 42.

    Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    CAS 

    Google Scholar
     

  • 43.

    Perdew, J. P. et al. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    ADS 
    CAS 

    Google Scholar
     

  • 44.

    Dudarev, S. L. et al. Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+U study. Phys. Rev. B 57, 1505–1509 (1998).

    ADS 
    CAS 

    Google Scholar
     

  • 45.

    Po, H. C. et al. Faithful tight-binding models and fragile topology of magic-angle bilayer graphene. Phys. Rev. B 99, 195455 (2019).

    ADS 
    CAS 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *