CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Streltsov, A., Adesso, G. & Plenio, M. B. Quantum coherence as a resource. Rev. Mod. Phys.89, 041003 (2017).

    ADS 
    MathSciNet 

    Google Scholar
     

  • 2.

    Shi, H.-L. et al. Coherence depletion in the Grover quantum search algorithm. Phys. Rev. A95, 032307 (2017).

    ADS 
    MathSciNet 

    Google Scholar
     

  • 3.

    Treutlein, P., Genes, C., Hammerer, K., Poggio, M. & Rabl, P. Hybrid Mechanical Systems (Springer, Berlin Heidelberg, 2014).


    Google Scholar
     

  • 4.

    Gisin, N., Ribordy, G. & Tittel, W. & Binden, Z. H. Quantum cryptography. Rev. Mod. Phys.74, 145 (2002).

    ADS 
    MATH 

    Google Scholar
     

  • 5.

    Ma, J., Yadin, B., Girolami, D., Vedral, V. & Gu, M. Converting coherence to quantum correlations. Phys. Rev. Lett.116, 160407 (2016).

    ADS 
    PubMed 

    Google Scholar
     

  • 6.

    Sete, Eyob A., Eleuch, H., & Das, S. Semiconductor cavity QED with squeezed light: Nonlinear regime. Phys. Rev. A84, 053817 (2011).

  • 7.

    Mohamed, A.-B.A., Eleuch, H. & Raymond Ooi, C. H. Non-locality correlation in two driven qubits inside an open coherent cavity: Trace norm distance and maximum bell function. Sci. Rep.9, 19632 (2019).

    ADS 
    CAS 
    PubMed Central 

    Google Scholar
     

  • 8.

    Sete, Eyob A. & Eleuch, H. High-efficiency quantum state transfer and quantum memory using a mechanical oscillator Phys. Rev. A91, 032309 (2015)

  • 9.

    Eleuch, H. Quantum trajectories and autocorrelation function in semiconductor microcavity. Appl. Math. Inf. Sci.3, 185 (2009).

    MathSciNet 
    MATH 

    Google Scholar
     

  • 10.

    Wu, K.-D. et al. Experimental cyclic interconversion between coherence and quantum correlations. Phys. Rev. Lett.121, 050401 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Khan, S. & Tureci, H. E. Frequency combs in a lumped-element josephson-junction ciracuit. Phys. Rev. Lett.120, 153601 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).


    Google Scholar
     

  • 13.

    Sperling, J., Meyer-Scott, Barkhofen, E. S., Brecht, B. & Silberhorn, C. Experimental reconstruction of entanglement quasiprobabilities. Phys. Rev. Lett.122, 053602 (2019).

  • 14.

    Obada, A.-S.F., Hessian, H. A. & Mohamed, A.-B.A. Entropy and entanglement in the Jaynes-Cummings model with effects of cavity damping. J. Phys. B41, 135503 (2008).

    ADS 

    Google Scholar
     

  • 15.

    Mohamed, A.-B.A., Eleuch, H. & Raymond Ooi, C. H. Quantum coherence and entanglement partitions for two driven quantum dots inside a coherent micro cavity. Phys. Lett. A383, 125905 (2019).

    MathSciNet 
    CAS 

    Google Scholar
     

  • 16.

    Wigner, E. P. On the quantum correction for thermodynamic equilibrium. Phys. Rev.47, 749 (1932).

    ADS 
    MATH 

    Google Scholar
     

  • 17.

    Husimi, K. Some formal properties of the density matrix. Proc. Phys. Math. Soc. Jpn.22, 264 (1940).

    MATH 

    Google Scholar
     

  • 18.

    Hillery, M., O’Connell, R. F., Scully, M. O. & Wigner, E. P. Distribution functions in physics: Fundamentals. Phys. Rep.106, 121 (1984).

    ADS 
    MathSciNet 

    Google Scholar
     

  • 19.

    Miranowicz, A., Leonski, W. & Imoto, N. Quantum-optical states in finite-dimensional Hilbert space; I. General formalism. Adv. Chem. Phys.119, 155 (2001).

    CAS 

    Google Scholar
     

  • 20.

    Banerji, A., Singh, R. P. & Bandyopadhyay, A. Entanglement measure using Wigner function: Case of generalized vortex state formed by multiphoton subtraction. Opt. Commun.330, 85–90 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 21.

    Mohamed, A.-B. & Eleuch, H. Non-classical effects in cavity QED containing a nonlinear optical medium and a quantum well: Entanglement and non-Gaussanity. Eur. Phys. J. D69, 191 (2015).

    ADS 

    Google Scholar
     

  • 22.

    Ghorbani, M., Faghihi, M. J. & Safari, H. Wigner function and entanglement dynamics of a two-atom two-mode nonlinear Jaynes-Cummings model. J. Opt. Soc. Am. B34, 1884–1893 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 23.

    Ren, G. & Zhang, W. Nonclassicality of superposition of photon-added two-mode coherent states. Optik181, 191–201 (2019).

    ADS 

    Google Scholar
     

  • 24.

    Harder, G. et al. Local sampling of the Wigner function at telecom wavelength with loss-tolerant detection of photon statistics. Phys. Rev. Lett.116, 133601 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 25.

    Bolda, E. L., Tan, S. M. & Walls, D. Exponential potentials and cosmological scaling solutions. Phys. Rev. A57, 4686 (1998).

    ADS 
    CAS 

    Google Scholar
     

  • 26.

    Baumgratz, T., Cramer, M. & Plenio, M. B. Quantifying coherence. Phys. Rev. Lett.113, 140401 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Maleki, Y. Stereographic geometry of coherence and which-path information. Opt. Lett.44, 5513–5516 (2019).

    ADS 
    PubMed 

    Google Scholar
     

  • 28.

    Wehrl, A. General properties of entropy. Rev. Mod. Phys.50, 221 (1978).

    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • 29.

    Yazdanpanah, N., Tavassoly, M. K., Juárez-Amaro, R. & Moya-Cessa, H. M. Reconstruction of quasiprobability distribution functions of the cavity field considering field and atomic decays. Opt. Commun.400, 69–73 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 30.

    Obada, A.-S.F. & Mohamed, A.-B.A. Erasing information and purity of a quantum dot via its spontaneous decay. Solid State Commun.151, 1824–1827 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • 31.

    Mohamed, A.-B.A. & Eleuch, H. Coherence and information dynamics of a (Lambda)-type three-level atom interacting with a damped cavity field. Eur. Phys. J. Plus132, 75 (2017).


    Google Scholar
     

  • 32.

    von Neumann, J. Mathematical Foundations of Quantum Mechanics (Princeton University Press, Princeton, USA, 1955).


    Google Scholar
     

  • 33.

    Shannon, C. E. & Weaver, W. Mathematical Theory of Communication (Urbana University Press, Chicago, USA, 1949).


    Google Scholar
     

  • 34.

    Obada, A.-S.F., Hessian, H. A. & Mohamed, A.-B.A. Effect of phase-damped cavity on dynamics of tangles of a nondegenerate two-photon JC model. Opt. Commun.281, 5189–5193 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • 35.

    Milburn, G. J. Intrinsic decoherence in quantum mechanics. Phys. Rev. A44, 5401 (1991).

    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Mohamed, A.-B.A., Eleuch, H. & Obada, A.-S.F. Influence of the coupling between two qubits in an open coherent cavity: Nonclassical information via quasi-probability distributions. Entropy21, 1137 (2019).

    ADS 

    Google Scholar
     

  • 37.

    Zhang, J.-Q., Xiong, W., Zhang, S., Li, Y. & Feng, M. Generating the Schrodinger cat state in a nanomechanical resonator coupled to a charge qubit. Ann. Phys.527, 180 (2015).

    MathSciNet 
    MATH 

    Google Scholar
     

  • 38.

    Johansson, J. et al. Vacuum rabi oscillations in a macroscopic superconducting qubit L C oscillator system phys. Rev. Lett.96, 127006 (2006).

    ADS 
    CAS 

    Google Scholar
     

  • 39.

    Jaynes, E. T. & Cummings, F. W. Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE51, 89 (1963).


    Google Scholar
     

  • 40.

    Rabi, I. I. On the process of space quantization. Phys. Rev.49, 324 (1936).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • 41.

    Rabi, I. I. Space quantization in a gyrating magnetic field. Phys. Rev.51, 652 (1937).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • 42.

    Sanders, B. C. Review of entangled coherent states. J. Phys. A45, 244002 (2012).

    ADS 
    MathSciNet 
    MATH 

    Google Scholar
     

  • 43.

    Maleki, Y. & Zheltikov, A. M. Witnessing quantum entanglement in ensembles of nitrogen-vacancy centers coupled to a superconducting resonator. Opt. Express26, 17849 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Maleki, Y. & Zheltikov, A. M. Linear entropy of multiqutrit nonorthogonal states. Opt. Express27, 8291 (2019).

    ADS 
    PubMed 

    Google Scholar
     

  • 45.

    Maleki, Y. & Zheltikov, A. M. Generating maximally-path-entangled number states in two spin ensembles coupled to a superconducting flux qubit. Phys. Rev. A97, 012312 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 46.

    Maleki, Y., Khashami, F. & Mousavi, Y. Entanglement of three-spin states in the context of SU(2) coherent states. Int. J. Theor. Phys.54, 210 (2015).

    MATH 

    Google Scholar
     

  • 47.

    Moya-Cessa, H. & Knight, P. L. Series representation of quantum-field quasiprobabilities. Phys. Rev. A48, 2479 (1993).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 48.

    Hessian, H. A. & Mohamed, A.-B.A. Quasi-probability distribution functions for a single trapped ion interacting with a mixed laser field. Laser Phys.18, 1217–1223 (2008).

    ADS 

    Google Scholar
     

  • 49.

    Cahill, K. E. & Glauber, R. J. Ordered expansions in boson amplitude operators. Phys. Rev.177, 1857 (1969).

    ADS 

    Google Scholar
     

  • 50.

    Mohamed, A.-B.A. Long-time death of nonclassicality of a cavity field interacting with a charge qubit and its own reservoir. Phys. Lett. A374, 4115–4119 (2010).

    ADS 
    CAS 
    MATH 

    Google Scholar
     

  • 51.

    van Enk, S. J. & Kimble, H. J. On the classical character of control fields in quantum information processing. Quant. Inform. Comput.2, 1 (2002).

    MathSciNet 
    MATH 

    Google Scholar
     

  • 52.

    El-Orany, Faisal A. A. Atomic Wehrl entropy for the Jaynes-Cummings model explicit form and Bloch sphere radius. J. Mod. Opt.56, 99–103 (2009).

    CAS 
    MATH 

    Google Scholar
     

  • 53.

    Strandberg, I., Lu, Y., Quijandría, F. & Johansson, G. Numerical study of Wigner negativity in one-dimensional steady-state resonance fluorescence. Phys. Rev. A100, 063808 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 54.

    Raussendorf, R., Bermejo-Vega, J., Tyhurst, E., Okay, C. & Zurel, M. Phase-space-simulation method for quantum computation with magic states on qubits. Phys. Rev. A101, 012350 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 55.

    Botelhoa, L. A. S. & Vianna, R. O. Efficient quantum tomography of two-mode Wigner functions. Eur. Phys. J. D74, 42 (2020).

    ADS 

    Google Scholar
     

  • 56.

    Xue, Y. et al. Controlling quantum interference in phase space with amplitude. Sci. Rep.7, 2291 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Teh, R. Y. et al. Dynamics of transient cat states in degenerate parametric oscillation with and without nonlinear Kerr interactions. Phys. Rev. A101, 043807 (2020).

    ADS 
    CAS 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *