CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Gardner, T. A., Cote, I. M., Gill, J. A., Grant, A. & Watkinson, A. R. Long-term region-wide declines in Caribbean corals. Science 301, 958–960 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 2.

    Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 3.

    De’ath, G., Lough, J. M. & Fabricius, K. E. Declining coral calcification on the Great Barrier Reef. Science 323, 116–119 (2009).

  • 4.

    Hughes, T. P. et al. Coral reefs in the Anthropocene. Nature 546, 82–90 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 5.

    Randall, C. et al. Sexual production of corals for reef restoration in the Anthropocene. Mar. Ecol. Prog. Ser. 635, 203–232 (2020).

    ADS 
    Article 

    Google Scholar
     

  • 6.

    Willis, B. L., Babcock, R. C., Harrison, P. L., Oliver, J. K. & Wallace, C. C. Patterns in the mass spawning of corals on the Great Barrier Reef from 1981 to 1984. In Proceedings of the Fifth International Coral Reef Congress 343–348 (International Society for Reef Studies, 1985).

  • 7.

    Babcock, R. C. et al. Synchronous spawnings of 105 Scleractinian coral species on the Great Barrier Reef. Mar. Biol. 90, 379–394 (1986).

    Article 

    Google Scholar
     

  • 8.

    Heyward, A. J. & Negri, A. P. Natural inducers for coral larval metamorphosis. Coral Reefs 18, 273–279 (1999).

    Article 

    Google Scholar
     

  • 9.

    Okubo, N. et al. Comparative embryology of eleven species of stony corals (Scleractinia). PLoS ONE 8, e84115 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 10.

    Cleves, P. A., Strader, M. E., Bay, L. K., Pringle, J. R. & Matz, M. V. CRISPR/Cas9-mediated genome editing in a reef-building coral. Proc. Natl. Acad. Sci. 115, 5235–5240 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Bonner, W. A., Hulett, H. R., Sweet, R. G. & Herzenberg, L. A. Fluorescence activated cell sorting. Rev. Sci. Instrum. 43, 404–409 (1972).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 12.

    Herzenberg, L. A., Sweet, R. G. & Herzenberg, L. A. Fluorescence-activated cell sorting. Sci. Am. 234, 108–117 (1976).

    CAS 
    Article 

    Google Scholar
     

  • 13.

    Herzenberg, L. A. et al. The history and future of the fluorescence activated cell sorter and flow cytometry: A view from Stanford. Clin. Chem. 48, 1819–1827 (2002).

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Hennig, H. et al. An open-source solution for advanced imaging flow cytometry data analysis using machine learning. Methods 112, 201–210 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 15.

    Vives-Rego, J., Lebaron, P. & Nebe-von Caron, G. Current and future applications of flow cytometry in aquatic microbiology. FEMS Microbiol. Rev. 24, 429–448 (2000).

  • 16.

    Doležel, J., Greilhuber, J. & Suda, J. Flow cytometry with plants: An overview. In Flow Cytometry with Plant Cells (eds. Doležel, J., Greilhuber, J. & Suda, J.) 41–65 (Wiley, 2007).

  • 17.

    Henzler, C., Hoaglund, E. & Gaines, S. FISH-CS—A rapid method for counting and sorting species of marine zooplankton. Mar. Ecol. Prog. Ser. 410, 1–11 (2010).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 18.

    Delgado-Ramos, L. et al. Flow cytometry of microencapsulated colonies for genetics analysis of filamentous fungi. G3 Genes Genomes Genet. 4, 2271–2278 (2014).


    Google Scholar
     

  • 19.

    Hertweck, M. & Baumeister, R. Automated assays to study longevity in C. elegans. Mech. Ageing Dev. 126, 139–145 (2005).

  • 20.

    Watson, D. A., Gaskill, D. F., Brown, L. O., Doorn, S. K. & Nolan, J. P. Spectral measurements of large particles by flow cytometry. Cytometry A 75A, 460–464 (2009).

    Article 

    Google Scholar
     

  • 21.

    Heyward, A. J. & Negri, A. P. Turbulence, cleavage, and the naked embryo: A case for coral clones. Science 335, 1064–1064 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 22.

    Dove, S. G., Hoegh-Guldberg, O. & Ranganathan, S. Major colour patterns of reef-building corals are due to a family of GFP-like proteins. Coral Reefs 19, 197–204 (2001).

    Article 

    Google Scholar
     

  • 23.

    Roth, M. S., Alamaru, A., Padilla-Gamiño, J. & Gates, R. D. Fluorescence in eggs of the coral Montipora capitata. In The Biology of Corals: Developing a Fundamental Understanding of the Coral Stress Response: Final Report of the 2007 Edwin W Pauley Summer Program in Marine Biology. 95 (Hawaii Institute of Marine Biology, 2007).

  • 24.

    Viyakarn, V., Chavanich, S., Chong, G., Tsai, S. & Lin, C. Cryopreservation of sperm from the coral Acropora humilis. Cryobiology 80, 130–138 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 25.

    Salih, A., Larkum, A., Cox, G., Kühl, M. & Hoegh-Guldberg, O. Fluorescent pigments in corals are photoprotective. Nature 408, 850–853 (2000).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 26.

    Roth, M. S., Fan, T.-Y. & Deheyn, D. D. Life history changes in coral fluorescence and the effects of light intensity on larval physiology and settlement in Seriatopora hystrix. PLoS ONE 8, e59476 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 27.

    Haryanti, D. & Hidaka, M. Developmental changes in the intensity and distribution pattern of green fluorescence in coral larvae and juveniles. Galaxea J. Coral Reef Stud. 21, 13–25 (2019).

    Article 

    Google Scholar
     

  • 28.

    Smith, E. G., D’Angelo, C., Salih, A. & Wiedenmann, J. Screening by coral green fluorescent protein (GFP)-like chromoproteins supports a role in photoprotection of zooxanthellae. Coral Reefs 32, 463–474 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 29.

    Palmer, C. V., Modi, C. K. & Mydlarz, L. D. Coral fluorescent proteins as antioxidants. PLoS ONE 4, e7298 (2009).

    ADS 
    Article 

    Google Scholar
     

  • 30.

    Matz, M. V., Marshall, N. J. & Vorobyev, M. Are corals colorful?. Photochem. Photobiol. 82, 345 (2006).

    CAS 
    Article 

    Google Scholar
     

  • 31.

    Hollingsworth, L. L., Kinzie, R. A., Lewis, T. D., Krupp, D. A. & Leong, J.-A.C. Phototaxis of motile zooxanthellae to green light may facilitate symbiont capture by coral larvae. Coral Reefs 24, 523–523 (2005).

    ADS 
    Article 

    Google Scholar
     

  • 32.

    Hollingsworth, L. L., Lewis, T. D., Krupp, D. A. & Leong, J.-A. C. Early onset and expression of fluorescent proteins in the larvae of the mushroom coral Fungia scutaria Lamarck 1801. In Proceedings of 10th International Coral Reef Symposium 99–105 (2006).

  • 33.

    Gibbs, M. et al. Reef Restoration and Adaptation Program: Future Deployment Scenarios and Costings. 70 https://www.gbrrestoration.org/documents/20182/20686/T5+Future+Deployment+Scenarios+and+Costing+V7.9-3.pdf/d3794b9c-cf4a-4e4c-9647-335aaf810f3a (2019).

  • 34.

    Heyward, A. J., Rees, M. & Smith, L. D. Coral spawning slicks harnessed for large-scale coral culture. In Program and Abstracts, International Conference on Scientific Aspects of Coral Reef Assessment, Monitoring and Restoration 188–189 (National Coral Reef Institute, Nova Southeastern University, 1999).

  • 35.

    Doropoulos, C., Elzinga, J., ter Hofstede, R., van Koningsveld, M. & Babcock, R. C. Optimizing industrial-scale coral reef restoration: Comparing harvesting wild coral spawn slicks and transplanting gravid adult colonies. Restor. Ecol. 27, 758–767 (2019).

    Article 

    Google Scholar
     

  • 36.

    Suzuki, G. et al. Enhancing coral larval supply and seedling production using a special bundle collection system “coral larval cradle” for large‐scale coral restoration. Restor. Ecol. (2020).

  • 37.

    Han, Y., Gu, Y., Zhang, A. C. & Lo, Y.-H. Review: Imaging technologies for flow cytometry. Lab. Chip 16, 4639–4647 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 38.

    Isozaki, A. et al. A practical guide to intelligent image-activated cell sorting. Nat. Protoc. 14, 2370–2415 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 39.

    Daly, J. et al. Successful cryopreservation of coral larvae using vitrification and laser warming. Sci. Rep. 8, 15714 (2018).

    ADS 
    Article 

    Google Scholar
     

  • 40.

    Hagedorn, M. & Carter, V. L. Cryobiology: Principles, species conservation and benefits for coral reefs. Reprod. Fertil. Dev. 28, 1049 (2016).

    Article 

    Google Scholar
     

  • 41.

    Hagedorn, M. et al. Producing coral offspring with cryopreserved sperm: A tool for coral reef restoration. Sci. Rep. 7, 14432 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 42.

    Randall, C. J., Giuliano, C., Mead, D., Heyward, A. J. & Negri, A. P. Immobilisation of living coral embryos and larvae. Sci. Rep. 9, 14596 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 43.

    Padilla-Gamiño, J. L., Pochon, X., Bird, C., Concepcion, G. T. & Gates, R. D. From parent to gamete: Vertical transmission of Symbiodinium (Dinophyceae) ITS2 sequence assemblages in the reef building coral Montipora capitata. PLoS ONE 7, e38440 (2012).

    ADS 
    Article 

    Google Scholar
     

  • 44.

    Krupp, D. A. Sexual reproduction and early development of the solitary coral Fungia scutaria (Anthozoa: Scleractinia). Coral Reefs 2, 159–164 (1983).

    ADS 
    Article 

    Google Scholar
     

  • 45.

    Stoddart, J. A. & Black, R. Cycles of gametogenesis and planulation in the coral Pocillopora damicornis. Mar. Ecol. Prog. Ser. 23, 153–164 (1985).

    ADS 
    Article 

    Google Scholar
     

  • 46.

    Szmant-Froelich, A., Reutter, M. & Riggs, L. Sexual reproduction of Favia fragum (Esper): lunar patterns of gametogenesis, embryogenesis and planulation in Puerto Rico. Bull. Mar. Sci. 37, 880–892 (1985).


    Google Scholar
     

  • 47.

    Friedlander, A. M. et al. Status of coral reefs in the Hawaiian Archipelago. In Status of Coral Reefs of the World: 2004 Vol. 2 411–430 (Australian Institute of Marine Science, 2004).

  • 48.

    Petersen, D., Hatta, M., Laterveer, M. & van Bergen, D. Ex situ transportation of coral larvae for research, conservation, and aquaculture. Coral Reefs 24, 510–513 (2005).

  • 49.

    Makoto, O. & Iwao, K. Methods of Farming Sexually Propagated Corals and Outplanting for Coral Reef Rehabilitation; with List of References for Coral Reef Rehabilitation Through Active Restoration Measure. 1–63 (2014).

  • 50.

    Gruber, D. F., Kao, H.-T., Janoschka, S., Tsai, J. & Pieribone, V. A. Patterns of fluorescent protein expression in Scleractinian corals. Biol. Bull. 215, 143–154 (2008).

    Article 

    Google Scholar
     

  • 51.

    LaJeunesse, T. C. et al. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. 28, 2570-2580.e6 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 52.

    Bates, D., Machler, M., Bolker, B. M. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. Preprint at https://arxiv.org/abs/1406.5823 (2014).

  • 53.

    R Core Team. R: Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2019).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *