CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Niu, Y. L. & O’Hara, M. J. Global correlations of ocean ridge basalt chemistry with axial depth: a new perspective. J. Pet. 49, 633–664 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • 2.

    Byerly, B. L. & Lassiter, J. C. Isotopically ultradepleted domains in the convecting upper mantle: Implications for MORB petrogenesis. Geology 42, 203–206 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 3.

    D’Errico, M. E., Warren, J. M. & Godard, M. Evidence for chemically heterogeneous Arctic mantle beneath the Gakkel Ridge. Geochim. Cosmochim. Ac 174, 291–312 (2016).

    ADS 

    Google Scholar
     

  • 4.

    Dick, H. J. B. & Zhou, H. Y. Ocean rises are products of variable mantle composition, temperature and focused melting. Nat. Geosci. 8, 68–74 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • 5.

    Dosso, L. et al. The age and distribution of mantle heterogeneity along the Mid-Atlantic Ridge (31-41 degrees N). Earth Planet Sci. Lett. 170, 269–286 (1999).

    ADS 
    CAS 

    Google Scholar
     

  • 6.

    Hauri, E. H. Osmium isotopes and mantle convection. Philos. Trans.R. Soc. A 360, 2371–2382 (2002).

    ADS 
    CAS 

    Google Scholar
     

  • 7.

    Mallick, S., Dick, H. J. B., Sachi-Kocher, A. & Salters, V. J. M. Isotope and trace element insights into heterogeneity of subridge mantle. Geochem. Geophys. Geosyst. 15, 2438–2453 (2014).

    ADS 
    CAS 

    Google Scholar
     

  • 8.

    Warren, J. M., Shimizu, N., Sakaguchi, C., Dick, H. J. B. & Nakamura, E. An assessment of upper mantle heterogeneity based on abyssal peridotite isotopic compositions. J. Geophys. Res. Sol. Earth 114, B12203 (2009).

    ADS 

    Google Scholar
     

  • 9.

    Zhou, H. Y. & Dick, H. J. B. Thin crust as evidence for depleted mantle supporting the Marion Rise. Nature 494, 195–200 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Burton, K. W. et al. Unradiogenic lead in Earth’s upper mantle. Nat. Geosci. 5, 570–573 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • 11.

    Harvey, J. et al. Ancient melt extraction from the oceanic upper mantle revealed by Re-Os isotopes in abyssal peridotites from the Mid-Atlantic ridge. Earth Planet Sci. Lett. 244, 606–621 (2006).

    ADS 
    CAS 

    Google Scholar
     

  • 12.

    Simon, N. S. C. et al. Ultra-refractory domains in the oceanic mantle lithosphere sampled as mantle xenoliths at ocean islands. J. Petrol. 49, 1223–1251 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • 13.

    Gao, C. G., Dick, H. J. B., Liu, Y. & Zhou, H. Y. Melt extraction and mantle source at a Southwest Indian Ridge Dragon Bone amagmatic segment on the Marion Rise. Lithos 246, 48–60 (2016).

    ADS 

    Google Scholar
     

  • 14.

    Hamelin, C. et al. Atypically depleted upper mantle component revealed by Hf isotopes at Lucky Strike segment. Chem. Geol. 341, 128–139 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • 15.

    Stracke, A., Genske, F., Berndt, J. & Koornneef, J. M. Ubiquitous ultra-depleted domains in Earth’s mantle. Nat. Geosci. 12, 851–855 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 16.

    DeMets, C., Gordon, R. G. & Argus, D. F. Geologically current plate motions. Geophys J. Int 181, 1–80 (2010).

    ADS 

    Google Scholar
     

  • 17.

    Bonatti, E. et al. Upper mantle heterogeneity below the Mid‐Atlantic Ridge, 0°–15° N. J. Geophys. Res. Sol. Earth 97, 4461–4476 (1992).

    ADS 
    CAS 

    Google Scholar
     

  • 18.

    Cannat, M., Bideau, D. & Bougault, H. Serpentinized peridotites and gabbros in the Mid-Atlantic Ridge Axial Valley at 15°37′N and 16°52′N. Earth Planet Sci. Lett. 109, 87–106 (1992).

    ADS 
    CAS 

    Google Scholar
     

  • 19.

    Casey, J. F., Gao, Y., Benavidez, R. & Dragoi, C. The Lowest δ7Li Yet Recorded in MORB Glasses: The Connection with Oceanic Core Complex Formation, Refractory Rutile-bearing Eclogitic Mantle Sources and Melt Supply, American Geophysical Union, AGU Fall Meeting, abstract #V11A-2245 (2010).

  • 20.

    Dosso, L., Bougault, H. & Joron, J. L. Geochemical morphology of the North Mid-Atlantic Ridge, 10°24°N—trace element-isotope complementarity. Earth Planet Sci. Lett. 120, 443–462 (1993).

    ADS 
    CAS 

    Google Scholar
     

  • 21.

    Henrick, S. R., Dobrosavljevic, V., Dick, H. J. & Salters, V. J. M. Geochemistry of Basalts from the Asymmetric Spreading Ridge Segment at 16.5ºN on the Mid-Atlantic Ridge, American Geophysical Union, AGU Fall Meeting Dec. 15–19 (San Francisco, CA, 2014).

  • 22.

    Seyler, M., Lorand, J. P., Dick, H. J. B. & Drouin, M. Pervasive melt percolation reactions in ultra-depleted refractory harzburgites at the Mid-Atlantic Ridge, 15°20′N: ODP Hole 1274A. Contrib. Miner. Petrol 153, 303–319 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • 23.

    Silantyev, S. et al. Petrogenetic conditions at 18–20 N MAR: interaction between hydrothermal and magmatic systems. Petrology 24, 336–366 (2016).

    CAS 

    Google Scholar
     

  • 24.

    Wilson, S. C., Murton, B. J. & Taylor, R. N. Mantle composition controls the development of an Oceanic Core Complex. Geochem. Geophys. Geosyst. 14, 979–995 (2013).

    ADS 

    Google Scholar
     

  • 25.

    Brunelli, D., Cipriani, A. & Bonatti, E. Thermal effects of pyroxenites on mantle melting below mid-ocean ridges. Nat. Geosci. 11, 520–+ (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 26.

    Morgan, J. P. Thermodynamics of pressure release melting of a veined plum pudding mantle. Geochem. Geophys. Geosyst. 2 (2001).

  • 27.

    Pertermann, M. & Hirschmann, M. M. Partial melting experiments on a MORB-like pyroxenite between 2 and 3 GPa: constraints on the presence of pyroxenite in basalt source regions from solidus location and melting rate. J. Geophys. Res. Sol. Earth 108, 2125 (2003).

    ADS 

    Google Scholar
     

  • 28.

    Dick, H. & Fisher, R. In Developments in Petrology, Vol. 11, 295–308 (Elsevier, 1984).

  • 29.

    Bown, J. W. & White, R. S. Variation with spreading rate of oceanic crustal thickness and geochemistry. Earth Planet Sci. Lett. 121, 435–449 (1994).

    ADS 
    CAS 

    Google Scholar
     

  • 30.

    Dick, H. J. B., Lin, J. & Schouten, H. An ultraslow-spreading class of ocean ridge. Nature 426, 405–412 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Niu, Y. L. & Hekinian, R. Spreading-rate dependence of the extent of mantle melting beneath ocean ridges. Nature 385, 326–329 (1997).

    ADS 
    CAS 

    Google Scholar
     

  • 32.

    Reid, I. & Jackson, H. R. Oceanic spreading rate and crustal thickness. Mar. Geophys Res 5, 165–172 (1981).


    Google Scholar
     

  • 33.

    Smith, D. K. et al. Development and evolution of detachment faulting along 50 km of the Mid-Atlantic Ridge near 16.5°N. Geochem Geophy Geosy 15, 4692–4711 (2014).

    ADS 

    Google Scholar
     

  • 34.

    Navon, O. & Stolper, E. Geochemical consequences of melt percolation—the upper mantle as a chromatographic column. J. Geol. 95, 285–307 (1987).

    ADS 
    CAS 

    Google Scholar
     

  • 35.

    Liang, Y. & Liu, B. D. Simple models for disequilibrium fractional melting and batch melting with application to REE fractionation in abyssal peridotites. Geochim. Cosmochim. Acta 173, 181–197 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • 36.

    Bizimis, M., Salters, V. J. M. & Bonatti, E. Trace and REE content of clinopyroxenes from supra-subduction zone peridotites. Implications for melting and enrichment processes in island arcs. Chem. Geol. 165, 67–85 (2000).

    ADS 
    CAS 

    Google Scholar
     

  • 37.

    Ishimaru, S., Arai, S., Ishida, Y., Shirasaka, M. & Okrugin, V. M. Melting and multi-stage metasomatism in the mantle wedge beneath a frontal arc inferred from highly depleted peridotite xenoliths from the Avacha volcano, Southern Kamchatka. J. Pet. 48, 395–433 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • 38.

    Jean, M. M., Shervais, J. W., Choi, S. H. & Mukasa, S. B. Melt extraction and melt refertilization in mantle peridotite of the Coast Range ophiolite: an LA-ICP-MS study. Contrib. Miner. Petr 159, 113–136 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • 39.

    Le Roux, V., Dick, H. J. B. & Shimizu, N. Tracking flux melting and melt percolation in supra-subduction peridotites (Josephine ophiolite, USA). Contrib. Miner. Petrol 168, 1064 (2014).

    ADS 

    Google Scholar
     

  • 40.

    Dick, H. J. B. & Bullen, T. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib. Miner. Petr 86, 54–76 (1984).

    ADS 
    CAS 

    Google Scholar
     

  • 41.

    Hellebrand, E., Snow, J. E., Hoppe, P. & Hofmann, A. W. Garnet-field melting and late-stage refertilization in ‘residual’ abyssal peridotites from the Central Indian Ridge. J. Pet. 43, 2305–2338 (2002).

    ADS 
    CAS 

    Google Scholar
     

  • 42.

    Warren, J. M. Global variations in abyssal peridotite compositions. Lithos 248, 193–219 (2016).

    ADS 

    Google Scholar
     

  • 43.

    Dick, H. J. & Natland, J. H. In Ocean Drilling Program Scientific Results (eds Gillis, K., Mevel, C. & Allan, J.), 103–134 (Texas A & M University, Ocean Drilling Program, College Station, TX, United States 1996).

  • 44.

    Gaetani, G. A. & Grove, T. L. The influence of water on melting of mantle peridotite. Contrib. Miner. Petrol 131, 323–346 (1998).

    ADS 
    CAS 

    Google Scholar
     

  • 45.

    Umino, S. et al. Thermal and chemical evolution of the subarc mantle revealed by spinel-hosted melt inclusions in boninite from the Ogasawara (Bonin) Archipelago, Japan. Geology 43, 151–154 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • 46.

    Choi, S. H., Shervais, J. W. & Mukasa, S. B. Supra-subduction and abyssal mantle peridotites of the Coast Range ophiolite, California. Contrib. Miner. Petrol 156, 551–576 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • 47.

    Tamura, A. & Arai, S. Harzburgite–dunite–orthopyroxenite suite as a record of supra-subduction zone setting for the Oman ophiolite mantle. Lithos, 90, 43–56 (2006).

    ADS 
    CAS 

    Google Scholar
     

  • 48.

    Seyler, M., Lorand, J. P., Toplis, M. J. & Godard, G. Asthenospheric metasomatism beneath the mid-ocean ridge: evidence from depleted abyssal peridotites. Geology 32, 301–304 (2004).

    ADS 
    CAS 

    Google Scholar
     

  • 49.

    Mckenzie, D. & Bickle, M. J. The volume and composition of melt generated by extension of the lithosphere. J. Petrol. 29, 625–679 (1988).

    ADS 
    CAS 

    Google Scholar
     

  • 50.

    Presnall, D. C., Gudfinnsson, G. H. & Walter, M. J. Generation of mid-ocean ridge basalts at pressures from 1 to 7 GPa. Geochim Cosmochim. Acta 66, 2073–2090 (2002).

    ADS 
    CAS 

    Google Scholar
     

  • 51.

    Anderson, D. L. New theory of the Earth (Cambridge University Press, 2007).

  • 52.

    Ritsema, J. & Allen, R. M. The elusive mantle plume. Earth Planet Sc. Lett. 207, 1–12 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • 53.

    Schaeffer, A. J. & Lebedev, S. Global shear speed structure of the upper mantle and transition zone. Geophys J. Int 194, 417–449 (2013).

    ADS 

    Google Scholar
     

  • 54.

    Dalton, C. A., Langmuir, C. H. & Gale, A. Geophysical and geochemical evidence for deep temperature variations beneath Mid-Ocean Ridges. Science 344, 80–83 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 55.

    Abers, G. A. & Hacker, B. R. A MATLAB toolbox and E xcel workbook for calculating the densities, seismic wave speeds, and major element composition of minerals and rocks at pressure and temperature. Geochem. Geophys. Geosyst. 17, 616–624 (2016).

    ADS 

    Google Scholar
     

  • 56.

    Salters, V. J. M., Mallick, S., Hart, S. R., Langmuir, C. E. & Stracke, A. Domains of depleted mantle: new evidence from hafnium and neodymium isotopes (vol 12, Q08001, 2011). Geochem. Geophys. Geosyst. 12, Q10017 (2011).

    ADS 

    Google Scholar
     

  • 57.

    Janney, P. E., Le Roex, A. P. & Carlson, R. W. Hafnium isotope and trace element constraints on the nature of mantle heterogeneity beneath the central Southwest Indian Ridge (13°E to 47°E). J. Petrol. 46, 2427–2464 (2005).

    ADS 
    CAS 

    Google Scholar
     

  • 58.

    Workman, R. K. & Hart, S. R. Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet Sci. Lett. 231, 53–72 (2005).

    ADS 
    CAS 

    Google Scholar
     

  • 59.

    Jagoutz, O. & Schmidt, M. W. The composition of the foundered complement to the continental crust and a re-evaluation of fluxes in arcs. Earth Planet Sci. Lett. 371, 177–190 (2013).

    ADS 

    Google Scholar
     

  • 60.

    Jagoutz, O., Muntener, O., Schmidt, M. W. & Burg, J. P. The roles of flux- and decompression melting and their respective fractionation lines for continental crust formation: evidence from the Kohistan arc. Earth Planet Sci. Lett. 303, 25–36 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • 61.

    Cannat, M. et al. Ultramafic and gabbroic exposures at the Mid-Atlantic Ridge: geological mapping in the 15°N region. Tectonophysics 279, 193–213 (1997).

    ADS 

    Google Scholar
     

  • 62.

    Sauter, D. et al. Continuous exhumation of mantle-derived rocks at the Southwest Indian Ridge for 11 million years. Nat. Geosci. 6, 314–320 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • 63.

    Hirth, G. & Kohlstedt, D. L. Experimental constraints on the dynamics of the partially molten upper-mantle .2. Deformation in the dislocation creep regime. J. Geophys. Res. Sol. Earth 100, 15441–15449 (1995).

    ADS 

    Google Scholar
     

  • 64.

    Lee, C. T. A. Compositional variation of density and seismic velocities in natural peridotites at STP conditions: Implications for seismic imaging of compositional heterogeneities in the upper mantle. J. Geophys. Res. Sol. Earth 108, 2441 (2003).

    ADS 

    Google Scholar
     

  • 65.

    Van Achterbergh, E., Ryan, C. & Griffin, W. In Ninth Annual V.M. Goldschmidt Conference. (Cambridge, Massachusetts, 1999).

  • 66.

    Armstrong, J. T. Citzaf-a package of correction programs for the quantitative Electron Microbeam X-Ray-Analysis of thick polished materials, thin-films, and particles. Microbeam Anal. 4, 177–200 (1995).

    CAS 

    Google Scholar
     

  • 67.

    Shaw, D. M. Trace element fractionation during anatexis. Geochim Cosmochim. Acta 34, 237–243 (1970).

    ADS 
    CAS 

    Google Scholar
     

  • 68.

    Grove, T. L. & Till, C. B. H 2 O-rich mantle melting near the slab–wedge interface. Contrib. Miner. Petrol 174, 80 (2019).

    ADS 

    Google Scholar
     

  • 69.

    Gale, A., Dalton, C. A., Langmuir, C. H., Su, Y. & Schilling, J. G. The mean composition of ocean ridge basalts. Geochem. Geophys. Eosyst. 14, 489–518 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • 70.

    Henrick, S. R. A. Insights on the Development of Oceanic Core Complexes Through the Geochemistry of Basalts at 16.5°N on the Mid-Atlantic Ridge Master of Science thesis. (Florida State University, 2016).

  • 71.

    Silantyev, S. et al. Peridotite-basalt association at MAR between 19°42′ and 19°59′ N: Evaluation of petrogenetic conditions and material balance during hydrothermal transformation of the oceanic crust. Petrology 23, 1–21 (2015).

    CAS 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *