CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Freiwald, A. Reef-forming cold-water corals. In Ocean Margin Systems (eds. Wefer, G. et al.) 365–385 (Springer-Verlag Berlin Heidelberg, 2002).

  • 2.

    Van Oevelen, D. et al. The cold-water coral community as hotspot of carbon cycling on continental margins: a food-web analysis from Rockall Bank (northeast Atlantic). Limnology and Oceanography 54, 1829–1844 (2009).

  • 3.

    Cathalot, C. et al. Cold-water coral reefs and adjacent sponge grounds: hotspots of benthic respiration and organic carbon cycling in the deep sea. Frontiers in Marine Science 2, 1–12 (2015).


    Google Scholar
     

  • 4.

    Thiem, Ø., Ravagnan, E., Fosså, J. H. & Berntsen, J. Food supply mechanisms for cold-water corals along a continental shelf edge. Journal of Marine Systems 60, 207–219 (2006).

    ADS 

    Google Scholar
     

  • 5.

    Duineveld, G. C. A., Lavaleye, M. S. S., Bergman, M. J. N., De Stigter, H. & Mienis, F. Trophic structure of a cold-water coral mound community (Rockall Bank, NE Atlantic) in relation to the near-bottom particle supply and current regime. Bulletin of Marine Science 81, 449–467 (2007).


    Google Scholar
     

  • 6.

    Soetaert, K., Mohn, C., Rengstorf, A., Grehan, A. & Van Oevelen, D. Ecosystem engineering creates a direct nutritional link between 600-m deep cold-water coral mounds and surface productivity. Scientific Reports 6, 35057 (2016).

  • 7.

    Duineveld, G. C. A., Lavaleye, M. S. S. & Berghuis, E. M. Particle flux and food supply to a seamount cold-water coral community (Galicia Bank, NW Spain). Marine Ecology Progress Series 277, 13–23 (2004).

    ADS 

    Google Scholar
     

  • 8.

    Hansell, D. A. & Carlson, C. A. Deep-ocean gradients in the concentration of dissolved organic carbon. Nature 395, 263–266 (1998).

    ADS 
    CAS 

    Google Scholar
     

  • 9.

    Wild, C. et al. Organic matter release by cold water corals and its implication for fauna-microbe interaction. Marine Ecology Progress Series 372, 67–75 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • 10.

    Wild, C. et al. Microbial degradation of cold-water coral-derived organic matter: potential implication for organic C cycling in the water column above Tisler Reef. Aquatic Biology 7, 71–80 (2009).


    Google Scholar
     

  • 11.

    Van Bleijswijk, J. D. L. et al. Microbial assemblages on a cold-water coral mound at the SE Rockall Bank (NE Atlantic): interactions with hydrography and topography. Biogeosciences 12, 4483–4496 (2015).

  • 12.

    Jensen, S., Bourne, D. G., Hovland, M. & Colin Murrell, J. High diversity of microplankton surrounds deep-water coral reef in the Norwegian Sea. FEMS Microbiol Ecol 82, 75–89 (2012).

    CAS 

    Google Scholar
     

  • 13.

    Roberts, J. M. et al. Monitoring environmental variability around cold-water coral reefs: the use of a benthic photolander and the potential of seafloor observatories. in Cold-Water Corals and Ecosystems (eds. Freiwald, A. & Roberts, J. M.) 483–502, https://doi.org/10.1007/3-540-27673-4_24 (Springer Berlin Heidelberg, 2005).

  • 14.

    Henry, L.-A., Davies, A. J. & Roberts, J. M. Beta diversity of cold-water coral reef communities off western Scotland. Coral Reefs 29, 427–436 (2010).

    ADS 

    Google Scholar
     

  • 15.

    Purser, A. et al. Local variation in the distribution of benthic megafauna species associated with cold-water coral reefs on the Norwegian margin. Continental Shelf Research 54, 37–51 (2013).

    ADS 

    Google Scholar
     

  • 16.

    Riisgård, H. U. & Larsen, P. S. Filter-feeding in marine macro-invertebrates: pump characteristics, modelling and energy cost. Biological Reviews 70, 67–106 (1995).


    Google Scholar
     

  • 17.

    Gili, J.-M. & Coma, R. Benthic suspension feeders: their paramount role in littoral marine food webs. Trends in Ecology & Evolution 13, 316–321 (1998).

    CAS 

    Google Scholar
     

  • 18.

    Larsen, P. S. & Riisgård, H. U. The sponge pump. Journal of Theoretical Biology 168, 53–63 (1994).


    Google Scholar
     

  • 19.

    Maldonado, M., Ribes, M. & Van Duyl, F. C. Nutrient fluxes through sponges: Biology, budgets, and ecological implications. in Advances in marine biology vol. 62 113–182 (Academic Press, 2012).

  • 20.

    De Goeij, J. M., Lesser, M. P. & Pawlik, J. R. Nutrient fluxes and ecological functions of coral reef sponges. In a changing ocean in Climate change, ocean acidification and sponges: impacts across multiple levels of organization (eds. Carballo, J. L. & Bell, J. J.) 373–410, https://doi.org/10.1007/978-3-319-59008-0_8 (Springer, 2017).

  • 21.

    Reiswig, H. M. Partial carbon and energy budgets of the bacteriosponge Verohgia fistularis (Porifera: Demospongiae) in Barbados. Marine Ecology 2, 273–293 (1981).

    ADS 
    CAS 

    Google Scholar
     

  • 22.

    Hentschel, U., Usher, K. M. & Taylor, M. W. Marine sponges as microbial fermenters. FEMS Microbiol Ecol 55, 167–177 (2006).

    CAS 

    Google Scholar
     

  • 23.

    Yahel, G., Sharp, J. H., Marie, D., Häse, C. & Genin, A. In situ feeding and element removal in the symbiont-bearing sponge Theonella swinhoei: bulk DOC is the major source for carbon. Limnology and Oceanography 48, 141–149 (2003).

    ADS 

    Google Scholar
     

  • 24.

    Leys, S. P., Kahn, A. S., Fang, J. K. H., Kutti, T. & Bannister, R. J. Phagocytosis of microbial symbionts balances the carbon and nitrogen budget for the deep‐water boreal sponge Geodia barretti. Limnology and Oceanography 63, 187–202 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 25.

    Pawlik, J. R. & McMurray, S. E. The emerging ecological and biogeochemical importance of sponges on coral reefs. Ann Rev Mar Sci, https://doi.org/10.1146/annurev-marine-010419-010807 (2019).

  • 26.

    Ward, J. E. & Shumway, S. E. Separating the grain from the chaff: particle selection in suspension- and deposit-feeding bivalves. Journal of Experimental Marine Biology and Ecology 300, 83–130 (2004).


    Google Scholar
     

  • 27.

    Riisgård, H. U., Larsen, P. S. & Nielsen, N. F. Particle capture in the mussel Mytilus edulis: the role of latero-frontal cirri. Mar. Biol. 127, 259–266 (1996).


    Google Scholar
     

  • 28.

    Ward, J. E., Sanford, L. P., Newell, R. I. E. & MacDonald, B. A. A new explanation of particle capture in suspension-feeding bivalve molluscs. Limnology and Oceanography 43, 741–752 (1998).

  • 29.

    Sorokin, Y. I. & Wyshkwarzev, D. I. Feeding on dissolved organic matter by some marine animals. Aquaculture 2, 141–148 (1973).


    Google Scholar
     

  • 30.

    Amouroux, J. M. Comparative study of the carbon cycle in Venus verrucosa fed on bacteria and phytoplankton. Mar. Biol. 90, 237–241 (1986).


    Google Scholar
     

  • 31.

    Roditi, H. A., Fisher, N. S. & Sanudo-Wilhelmy, S. A. Uptake of dissolved organic carbon and trace elements by zebra mussels. Nature 407, 78–80 (2000).

    ADS 
    CAS 

    Google Scholar
     

  • 32.

    Fiala-Médioni, A., Alayse, A. M. & Cahet, G. Evidence of in situ uptake and incorporation of bicarbonate and amino acids by a hydrothermal vent mussel. Journal of Experimental Marine Biology and Ecology 96, 191–198 (1986).


    Google Scholar
     

  • 33.

    Crossland, C. J., Hatcher, B. G. & Smith, S. V. Role of coral reefs in global ocean production. Coral Reefs 10, 55–64 (1991).

    ADS 

    Google Scholar
     

  • 34.

    De Goeij, J. M. et al. Surviving in a marine desert: the sponge loop retains resources within coral reefs. Science 342, 108–110 (2013).

  • 35.

    De Goeij, J. M. et al. Cell kinetics of the marine sponge Halisarca caerulea reveal rapid cell turnover and shedding. The Journal of Experimental Biology 212, 3892–3900 (2009).

  • 36.

    Rix, L. et al. Coral mucus fuels the sponge loop in warm- and cold-water coral reef ecosystems. Scientific Reports 6, 1–11 (2016).


    Google Scholar
     

  • 37.

    Alexander, B. E. et al. Cell turnover and detritus production in marine sponges from tropical and temperate benthic ecosystems. PLoS ONE 9, e109486 (2014).

    ADS 
    PubMed Central 

    Google Scholar
     

  • 38.

    Alexander, B. E. et al. Cell kinetics during regeneration in the sponge Halisarca caerulea: how local is the response to tissue damage? PeerJ 3, e820 (2015).

    PubMed Central 

    Google Scholar
     

  • 39.

    Tsuchiya, M. Biodeposit production by the mussel Mytilus edulis L. on rocky shores. Journal of Experimental Marine Biology and Ecology 47, 203–222 (1980).


    Google Scholar
     

  • 40.

    Beninger, P. G., Ward, J. E., MacDonald, B. A. & Thompson, R. J. Gill function and particle transport in Placopecten magellanicus (Mollusca: Bivalvia) as revealed using video endoscopy. Marine Biology 114, 281–288 (1992).


    Google Scholar
     

  • 41.

    Ward, E. J. & MacDonald, B. A. Pre-ingestive feeding behaviors of two sub-tropical bivalves (Pinctada imbricata and Arca zebra): responses to an acute increase in suspended sediment concentration. Bulletin of Marine Science 59, 417–432 (1996).


    Google Scholar
     

  • 42.

    Wotton, R. S. & Malmqvist, B. Feces in Aquatic Ecosystems. BioScience 51, 537–544 (2001).


    Google Scholar
     

  • 43.

    Rothans, T. C. & Miller, A. C. A link between biologically imported particulate organic nutrients and the detritus food web in reef communities. Mar. Biol. 110, 145–150 (1991).


    Google Scholar
     

  • 44.

    De Goeij, J. M. et al. Major bulk dissolved organic carbon (DOC) removal by encrusting coral reef cavity sponges. Marine Ecology Progress Series 357, 139–151 (2008).

    ADS 

    Google Scholar
     

  • 45.

    Siebers, D. Bacterial-invertebrate interactions in uptake of dissolved organic matter. Integr Comp Biol 22, 723–733 (1982).


    Google Scholar
     

  • 46.

    Ribes, M. et al. Functional convergence of microbes associated with temperate marine sponges. Environmental Microbiology 14, 1224–1239 (2012).

    CAS 

    Google Scholar
     

  • 47.

    De Goeij, J. M., Moodley, L., Houtekamer, M., Carballeira, N. M. & Van Duyl, F. C. Tracing 13C-enriched dissolved and particulate organic carbon in the bacteria-containing coral reef sponge Halisarca caerulea: evidence for DOM-feeding. Limnology and Oceanography 53, 1376–1386 (2008).

  • 48.

    Rix, L. et al. Reef sponges facilitate the transfer of coral-derived organic matter to their associated fauna via the sponge loop. Marine Ecology Progress Series 589, 85–96 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 49.

    Wright, S. H. & Manahan, D. T. Integumental nutrient uptake by aquatic organisms. Annual Review of Physiology 51, 585–600 (1989).

    CAS 

    Google Scholar
     

  • 50.

    Rix, L. et al. Differential recycling of coral and algal dissolved organic matter via the sponge loop. Functional Ecology 31, 778–789 (2017).


    Google Scholar
     

  • 51.

    Schöttner, S. et al. Relationships between host phylogeny, host type and bacterial community diversity in cold-water coral reef sponges. PLoS ONE 8, e55505 (2013).

    ADS 
    PubMed Central 

    Google Scholar
     

  • 52.

    Jensen, S., Duperron, S., Birkeland, N.-K. & Hovland, M. Intracellular Oceanospirillales bacteria inhabit gills of Acesta bivalves. FEMS Microbiol Ecol 74, 523–533 (2010).

    CAS 

    Google Scholar
     

  • 53.

    Jørgensen, C. B. August Pütter, August Krogh, and modern ideas on the use of dissolved organic matter in aquatic environments. Biological Reviews 51, 291–328 (1976).


    Google Scholar
     

  • 54.

    Wooster, M. K., McMurray, S. E., Pawlik, J. R., Morán, X. A. G. & Berumen, M. L. Feeding and respiration by giant barrel sponges across a gradient of food abundance in the Red Sea. Limnology and Oceanography 64, 1790–1801 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 55.

    Reiswig, H. M. Water transport, respiration and energetics of three tropical marine sponges. Journal of Experimental Marine Biology and Ecology 14, 231–249 (1974).


    Google Scholar
     

  • 56.

    Pile, A. J., Patterson, M. R. & Witman, J. D. In situ grazing on plankton <10 µm by the boreal sponge Mycale lingua. Marine Ecology Progress Series 141, 95–102 (1996).

  • 57.

    Järnegren, J. & Altin, D. Filtration and respiration of the deep living bivalve Acesta excavata (J.C. Fabricius, 1779) (Bivalvia; Limidae). Journal of Experimental Marine Biology and Ecology 334, 122–129 (2006).


    Google Scholar
     

  • 58.

    Wright, R. T., Coffin, R. B., Ersing, C. P. & Pearson, D. Field and laboratory measurements of bivalve filtration of natural marine bacterioplankton. Limnology and Oceanography 27, 91–98 (1982).

    ADS 

    Google Scholar
     

  • 59.

    Maier, S. R. et al. Survival under conditions of variable food availability: resource utilization and storage in the cold-water coral Lophelia pertusa. Limnology and Oceanography 64, 1651–1671 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 60.

    McMurray, S. E., Stubler, A. D., Erwin, P. M., Finelli, C. M. & Pawlik, J. R. A test of the sponge-loop hypothesis for emergent Caribbean reef sponges. Marine Ecology Progress Series 588, 1–14 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 61.

    Richter, C., Wunsch, M., Rasheed, M., Kötter, I. & Badran, M. I. Endoscopic exploration of Red Sea coral reefs reveals dense populations of cavity-dwelling sponges. Nature 413, 726–730 (2001).

    ADS 
    CAS 

    Google Scholar
     

  • 62.

    Ginger, M. L. et al. Organic matter assimilation and selective feeding by holothurians in the deep sea: some observations and comments. Progress in Oceanography 50, 407–421 (2001).

    ADS 

    Google Scholar
     

  • 63.

    Gergs, R. & Rothhaupt, K.-O. Feeding rates, assimilation efficiencies and growth of two amphipod species on biodeposited material from zebra mussels. Freshwater Biology 53, 2494–2503 (2008).


    Google Scholar
     

  • 64.

    Welch, H. E. Relationships between assimiliation efficiencies and growth efficiencies for aquatic consumers. Ecology 49, 755–759 (1968).


    Google Scholar
     

  • 65.

    Hoffmann, F., Rapp, H. T., Zöller, T. & Reitner, J. Growth and regeneration in cultivated fragments of the boreal deep water sponge Geodia barretti Bowerbank, 1858 (Geodiidae, Tetractinellida, Demospongiae). Journal of Biotechnology 100, 109–118 (2003).

    CAS 

    Google Scholar
     

  • 66.

    Hoffmann, F. et al. Complex nitrogen cycling in the sponge Geodia barretti. Environmental Microbiology 11, 2228–2243 (2009).

    CAS 

    Google Scholar
     

  • 67.

    Fang, J. K. H. et al. Impact of particulate sediment, bentonite and barite (oil-drilling waste) on net fluxes of oxygen and nitrogen in Arctic-boreal sponges. Environmental Pollution 238, 948–958 (2018).

    CAS 

    Google Scholar
     

  • 68.

    Allen Brooks, R., Nizinski, M. S., Ross, S. W. & Sulak, K. J. Frequency of sublethal injury in a deepwater ophiuroid, Ophiacantha bidentata, an important component of western Atlantic Lophelia reef communities. Mar Biol 152, 307–314 (2007).


    Google Scholar
     

  • 69.

    Glud, R. N., Eyre, B. D. & Patten, N. Biogeochemical responses to mass coral spawning at the Great Barrier Reef: effects on respiration and primary production. Limnology and Oceanography 53, 1014–1024 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • 70.

    Piepenburg, D. & Schmid, M. K. A photographic survey of the epibenthic megafauna of the Arctic Laptev Sea shelf: distribution, abundance, and estimates of biomass and organic carbon demand. Marine Ecology Progress Series 147, 63–75 (1997).

    ADS 

    Google Scholar
     

  • 71.

    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. (2017).

  • 72.

    Ogle, D. H., Wheeler, P. & Dinno, A. FSA: Fisheries Stock Analysis. R package version 0.8.22, https://github.com/droglenc/FSA (2018).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *