CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Bastin, J.-F. et al. The extent of forest in dryland biomes. Science356, 635–638 (2017).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 2.

    Reynolds, S. C., Marston, C. G., Hassani, H., King, G. C. P. & Bennett, M. R. Environmental hydro-refugia demonstrated by vegetation vigour in the Okavango Delta, Botswana. Sci. Rep.6, 35951 (2016).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 3.

    Haig, S. M., Murphy, S. P., Matthews, J. H., Arismendi, I. & Safeeq, M. Climate-altered wetlands challenge waterbird use and migratory connectivity in arid landscapes. Sci. Rep.9, 4666 (2019).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 4.

    Leigh, C., Sheldon, F., Kingsford, R. T. & Arthington, A. H. Sequential floods drive booms and wetland persistence in dryland rivers: A synthesis. Mar. Freshw. Res.61, 896–908 (2010).

    CAS 

    Google Scholar
     

  • 5.

    Jenkins, K. M. & Boulton, A. J. Connectivity in a dryland river: Short-term aquatic microinvertebrate recruitment following floodplain inundation. Ecology84, 2708–2723 (2003).


    Google Scholar
     

  • 6.

    Arthington, A. H. & Balcombe, S. R. Extreme flow variability and the ‘boom and bust’ ecology of fish in arid-zone floodplain rivers: A case history with implications for environmental flows, conservation and management. Ecohydrology4, 708–720 (2011).


    Google Scholar
     

  • 7.

    Cumming, G. S., Paxton, M., King, J. & Beuster, H. Foraging guild membership explains variation in waterbird responses to the hydrological regime of an arid-region flood-pulse river in Namibia. Freshw. Biol.57, 1202–1213 (2012).


    Google Scholar
     

  • 8.

    Rogers, K., Ralph, T. & Imgraben, S. Water requirements of biota, geomorphology and climate change in the Macquarie Marshes. In Ecosystem Response Modelling in the Murray–Darling Basin (eds Saintilan, N. & Overton, I.) (CSIRO Publishing, Melbourne, 2010).


    Google Scholar
     

  • 9.

    Capon, S. J. Plant community responses to wetting and drying in a large arid floodplain. River Res. Appl.19, 509–520 (2003).


    Google Scholar
     

  • 10.

    Huang, J. et al. Dryland climate change: Recent progress and challenges. Rev. Geophys.55, 719–778 (2017).

    ADS 

    Google Scholar
     

  • 11.

    Tooth, S. The geomorphology of wetlands in drylands: Resilience, nonresilience, or …?. Geomorphology305, 33–48 (2018).

    ADS 

    Google Scholar
     

  • 12.

    Power, S., Delage, F., Chung, C., Kociuba, G. & Keay, K. Robust twenty-first-century projections of El Niño and related precipitation variability. Nature502, 541 (2013).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 13.

    Cai, W. et al. Increased frequency of extreme La Niña events under greenhouse warming. Nat. Clim. Change5, 132 (2015).

    ADS 

    Google Scholar
     

  • 14.

    Huang, L. et al. Drought dominates the interannual variability in global terrestrial net primary production by controlling semi-arid ecosystems. Sci. Rep.6, 24639 (2016).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 15.

    Dong, B. & Dai, A. The influence of the interdecadal pacific oscillation on temperature and precipitation over the Globe. Clim. Dyn.45, 2667–2681 (2015).


    Google Scholar
     

  • 16.

    Barr, C. et al. Holocene El Niño-Southern Oscillation variability reflected in subtropical Australian precipitation. Sci. Rep.9, 1627 (2019).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 17.

    Vance, T. R., Roberts, J. L., Plummer, C. T., Kiem, A. S. & van Ommen, T. D. Interdecadal Pacific variability and eastern Australian megadroughts over the last millennium. Geophys. Res. Lett.42, 129–137 (2015).

    ADS 

    Google Scholar
     

  • 18.

    Murray-Hudson, M. et al. Remote Sensing-derived hydroperiod as a predictor of floodplain vegetation composition. Wetlands Ecol. Manag.23, 603–616 (2015).


    Google Scholar
     

  • 19.

    Bino, G., Sisson, S. A., Kingsford, R. T., Thomas, R. F. & Bowen, S. Developing state and transition models of floodplain vegetation dynamics as a tool for conservation decision-making: A case study of the Macquarie Marshes Ramsar wetland. J. Appl. Ecol.52, 654–664 (2015).


    Google Scholar
     

  • 20.

    Fu, B., Pollino, C. A., Cuddy, S. M. & Andrews, F. Assessing climate change impacts on wetlands in a flow regulated catchment: A case study in the Macquarie Marshes, Australia. J. Environ. Manag.157, 127–138 (2015).


    Google Scholar
     

  • 21.

    Saco, P. M. & Rodríguez, J. F. 2.14 modeling ecogeomorphic systems. In Treatise on Geomorphology (ed. Shroder, J. F.) (Academic Press, Cambridge, 2013).


    Google Scholar
     

  • 22.

    Rodríguez, J. F., Saco, P. M., Sandi, S., Saintilan, N. & Riccardi, G. Potential increase in coastal wetland vulnerability to sea-level rise suggested by considering hydrodynamic attenuation effects. Nat. Commun.8, 16094 (2017).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 23.

    Alizad, K. et al. A coupled, two-dimensional hydrodynamic-marsh model with biological feedback. Ecol. Model.327, 29–43 (2016).


    Google Scholar
     

  • 24.

    Kirwan, M. L., Temmerman, S., Skeehan, E. E., Guntenspergen, G. R. & Fagherazzi, S. Overestimation of marsh vulnerability to sea level rise. Nat. Clim. Change6, 253–260 (2016).

    ADS 

    Google Scholar
     

  • 25.

    Sandi, S. G., Rodríguez, J. F., Saintilan, N., Riccardi, G. & Saco, P. M. Rising tides, rising gates: The complex ecogeomorphic response of coastal wetlands to sea-level rise and human interventions. Adv. Water Resour.114, 135–148 (2018).

    ADS 

    Google Scholar
     

  • 26.

    Foti, R., del Jesus, M., Rinaldo, A. & Rodriguez-Iturbe, I. Signs of critical transition in the Everglades wetlands in response to climate and anthropogenic changes. Proc. Natl. Acad. Sci.110, 6296–6300 (2013).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 27.

    Capon, S. J. & Brock, M. A. Flooding, soil seed bank dynamics and vegetation resilience of a hydrologically variable desert floodplain. Freshw. Biol.51, 206–223 (2006).


    Google Scholar
     

  • 28.

    Reid, M. A., Reid, M. C. & Thoms, M. C. Ecological significance of hydrological connectivity for wetland plant communities on a dryland floodplain river, MacIntyre River, Australia. Aquat. Sci.78, 139–158 (2016).

    CAS 

    Google Scholar
     

  • 29.

    Capon, S. J. & Reid, M. A. Vegetation resilience to mega-drought along a typical floodplain gradient of the southern Murray–Darling Basin, Australia. J. Veg. Sci.27, 926–937 (2016).


    Google Scholar
     

  • 30.

    Ekström, M., et al. Central slopes cluster report. In Climate Change in Australia Projections for Australia’s Natural Resource Management Regions: Cluster Reports (eds Ekström, M., Whetton, P., Gerbing, C., Grose, M., Webb, L., Risbey, J.). CSIRO and Bureau of Meteorolog (2015).

  • 31.

    Gallant, A. J. E., Kiem, A. S., Verdon-Kidd, D. C., Stone, R. C. & Karoly, D. J. Understanding hydroclimate processes in the Murray–Darling Basin for natural resources management. Hydrol. Earth Syst. Sci.16, 2049–2068 (2012).

    ADS 

    Google Scholar
     

  • 32.

    Bowen, S., Simpson, S. L., Hosking, T., Shelly, D. S. Changes in extent and condition of the vegetation of the Macquarie Marshes and floodplain 1991–2008–2013. (eds NSW Office of Environment and Heritage) (2017).

  • 33.

    Sandi, S. G. et al. Detecting inundation thresholds for dryland wetland vulnerability. Adv. Water Resour.128, 168–182 (2019).

    ADS 

    Google Scholar
     

  • 34.

    CSIRO, BoM. Climate Change in Australia Projections for Australia’s Natural Resource Management Regions: Technical Report. (eds Whetton, P. et al.) CSIRO and Bureau of Meteorology (2015).

  • 35.

    Bunn, S. E. & Arthington, A. H. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ. Manag.30, 492–507 (2002).


    Google Scholar
     

  • 36.

    Palmer, M. & Ruhi, A. Linkages between flow regime, biota, and ecosystem processes: Implications for river restoration. Science365, eaaw2087 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 37.

    Maestre, F. T. et al. Plant species richness and ecosystem multifunctionality in global drylands. Science335, 214–218 (2012).

    CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     

  • 38.

    Rayner, T. S., Kingsford, R. T., Suthers, I. M. & Cruz, D. O. Regulated recruitment: Native and alien fish responses to widespread floodplain inundation in the Macquarie Marshes, arid Australia. Ecohydrology8, 148–159 (2015).


    Google Scholar
     

  • 39.

    Briggs, S. V., Thornton, S. A. & Lawler, W. G. Relationships between hydrological control of river red gum wetlands and waterbird breeding. EMU Aust. Ornithol.97, 31–42 (1997).


    Google Scholar
     

  • 40.

    Glazebrook, H. S. & Robertson, A. I. The effect of flooding and flood timing on leaf litter breakdown rates and nutrient dynamics in a river red gum (Eucalyptus camaldulensis) forest. Aust. J. Ecol.24, 625–635 (1999).


    Google Scholar
     

  • 41.

    Francis, C. & Sheldon, F. River Red Gum (Eucalyptus camaldulensis Dehnh.) organic matter as a carbon source in the lower Darling River, Australia. Hydrobiologia481, 113–124 (2002).

    CAS 

    Google Scholar
     

  • 42.

    Whitaker, K. et al. Vegetation persistence and carbon storage: Implications for environmental water management for Phragmites australis. Water Resour. Res.51, 5284–5300 (2015).

    CAS 
    ADS 

    Google Scholar
     

  • 43.

    Whalley, R. D. B., Price, J. N., Macdonald, M. J. & Berney, P. J. Drivers of change in the social-ecological systems of the Gwydir Wetlands and Macquarie Marshes in northern New South Wales, Australia. Rangeland J.33, 109–119 (2011).


    Google Scholar
     

  • 44.

    Macdonald, M. J., Whalley, W. R. D. B., Julien, M. H., Sindel, B. M. & Duggin, J. A. Flood-induced recruitment of the invasive perennial herb Phyla canescens (lippia). Rangeland J.34, 269–276 (2012).


    Google Scholar
     

  • 45.

    Price, J. N., Berney, P. J., Ryder, D., Whalley, R. D. B. & Gross, C. L. Disturbance governs dominance of an invasive forb in a temporary wetland. Oecologia167, 759–769 (2011).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 46.

    Wassens, S., Ning, N., Hardwick, L., Bino, G. & Maguire, J. Long-term changes in freshwater aquatic plant communities following extreme drought. Hydrobiologia799, 233–247 (2017).


    Google Scholar
     

  • 47.

    Sandi, S.G., et al. Patch organization and resilience of dryland wetlands. Sci. Total Environ. 726, 138581 (2020).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 48.

    Thoms, M. C. Floodplain–river ecosystems: Lateral connections and the implications of human interference. Geomorphology56, 335–349 (2003).

    ADS 

    Google Scholar
     

  • 49.

    Keesstra, S. et al. The way forward: Can connectivity be useful to design better measuring and modelling schemes for water and sediment dynamics?. Sci. Total Environ.644, 1557–1572 (2018).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 50.

    Bishop-Taylor, R., Tulbure, M. G. & Broich, M. Surface-water dynamics and land use influence landscape connectivity across a major dryland region. Ecol. Appl.27, 1124–1137 (2017).

    PubMed 

    Google Scholar
     

  • 51.

    Saco, P. M. et al. Vegetation and soil degradation in drylands: Non linear feedbacks and early warning signals. Curr. Opin. Environ. Sci. Health5, 67–72 (2018).


    Google Scholar
     

  • 52.

    Ward, J. V., Tockner, K. & Schiemer, F. Biodiversity of floodplain river ecosystems: Ecotones and connectivity1. Regul. Rivers Res. Manag.15, 125–139 (1999).


    Google Scholar
     

  • 53.

    Tockner, K., Malard, F. & Ward, J. V. An extension of the flood pulse concept. Hydrol. Process.14, 2861–2883 (2000).

    ADS 

    Google Scholar
     

  • 54.

    Garcia, M. L., Basile, P. A., Riccardi, G. A. & Rodriguez, J. F. Modelling extraordinary floods and sedimentological processes in a large channel-floodplain system of the Lower Paraná River (Argentina). Int. J. Sediment. Res.30, 150–159 (2015).


    Google Scholar
     

  • 55.

    Stenta, H. R., Riccardi, G. A. & Basile, P. A. Grid size effects analysis and hydrological similarity of surface runoff in flatland basins. Hydrol. Sci. J.62, 1736–1754 (2017).


    Google Scholar
     

  • 56.

    Wen, L. et al. From hydrodynamic to hydrological modelling: Investigating long-term hydrological regimes of key wetlands in the Macquarie Marshes, a semi-arid lowland floodplain in Australia. J. Hydrol.500, 45–61 (2013).

    ADS 

    Google Scholar
     

  • 57.

    Thomas, R. F., Kingsford, R. T., Lu, Y. & Hunter, S. J. Landsat mapping of annual inundation (1979–2006) of the Macquarie Marshes in semi-arid Australia. Int. J. Remote Sens.32, 4545–4569 (2011).

    ADS 

    Google Scholar
     

  • 58.

    Jarihani, A. A., Callow, J. N., McVicar, T. R., Van Niel, T. G. & Larsen, J. R. Satellite-derived Digital Elevation Model (DEM) selection, preparation and correction for hydrodynamic modelling in large, low-gradient and data-sparse catchments. J. Hydrol.524, 489–506 (2015).

    ADS 

    Google Scholar
     

  • 59.

    Powell, S. J., Jakeman, A. & Croke, B. Can NDVI response indicate the effective flood extent in macrophyte dominated floodplain wetlands?. Ecol. Ind.45, 486–493 (2014).


    Google Scholar
     

  • 60.

    Thapa, R., Thoms, M. C. & Parsons, M. The response of dryland floodplain vegetation productivity to flooding and drying. J. Arid Environ.129, 42–55 (2016).

    ADS 

    Google Scholar
     

  • 61.

    Wen, L., Powell, M. & Saintilan, N. Landscape position strongly affects the resistance and resilience to water deficit anomaly of floodplain vegetation community. Ecohydrology11, e2027 (2018).


    Google Scholar
     

  • 62.

    Thoms, M. & Parsons, M. Patterns of vegetation community distribution in a large, semi-arid floodplain landscape. River Syst.19, 271–282 (2011).


    Google Scholar
     

  • 63.

    Roberts, J. & Marston, F. Water regime for wetland and floodplain plants: a source book for the Murray–Darling Basin. National Water Commission (2011).

  • 64.

    Wen, L., Saintilan, N., Rogers, K., & Ling, J. Linking river red gum condition to hydrological change at Yanga National Park. In Ecosystem response modelling in the Murray Darling Basin (eds Saintilan, N. & Overton, I.). CSIRO (2010).

  • 65.

    Doody, T. M. et al. Quantifying water requirements of riparian river red gum (Eucalyptus camaldulensis) in the Murray–Darling Basin, Australia—implications for the management of environmental flows. Ecohydrology8, 1471–1487 (2015).


    Google Scholar
     

  • 66.

    Guerschman, J. P. et al. Assessing the effects of site heterogeneity and soil properties when unmixing photosynthetic vegetation, non-photosynthetic vegetation and bare soil fractions from Landsat and MODIS data. Remote Sens. Environ.161, 12–26 (2015).

    ADS 

    Google Scholar
     

  • 67.

    Timbal, B., Fernandez, E. & Li, Z. Generalization of a statistical downscaling model to provide local climate change projections for Australia. Environ. Model. Softw.24, 341–358 (2009).


    Google Scholar
     

  • 68.

    McGregor, J. L. & Dix, M. R. An updated description of the conformal-cubic atmospheric model. In High Resolution Numerical Modelling of the Atmosphere and Ocean (eds Hamilton, K. & Ohfuchi, W.) (Springer, New York, 2008).


    Google Scholar
     

  • 69.

    Teng, J., Chiew, F. H. S., Vaze, J., Marvanek, S. & Kirono, D. G. C. Estimation of climate change impact on mean annual runoff across continental Australia using Budyko and Fu equations and hydrological models. J. Hydrometeorol.13, 1094–1106 (2012).

    ADS 

    Google Scholar
     

  • 70.

    Jaeger, K. L., Olden, J. D. & Pelland, N. A. Climate change poised to threaten hydrologic connectivity and endemic fishes in dryland streams. Proc. Natl. Acad. Sci.111, 13894–13899 (2014).

    CAS 
    PubMed 
    ADS 

    Google Scholar
     

  • 71.

    Dannenberg, M. P., Wise, E. K. & Smith, W. K. Reduced tree growth in the semiarid United States due to asymmetric responses to intensifying precipitation extremes. Sci. Adv.5, eaaw0667 (2019).

    PubMed 
    PubMed Central 
    ADS 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *