CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Granqvist, C. G. & Niklasson, G. A. Solar energy materials for thermal applications: a primer. Sol. Energy Mater. Sol. Cells 180, 213–226 (2018).

    CAS 

    Google Scholar
     

  • 2.

    Seeboth, A., Lotzsch, D., Ruhmann, R. & Muehling, O. Thermochromic polymers-function by design. Chem. Rev. 114, 3037–3068 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Granqvist, C. G. Solar energy materials. Adv. Mater. 15, 1789–1803 (2003).

    CAS 

    Google Scholar
     

  • 4.

    Debije, M. G. Solar energy collectors with tunable transmission. Adv. Funct. Mater. 20, 1498–1502 (2010).

    CAS 

    Google Scholar
     

  • 5.

    Ko, E.-H., Kim, H.-J., Lee, S.-M., Kim, T.-W. & Kim, H.-K. Stretchable Ag electrodes with mechanically tunable optical transmittance on wavy-patterned PDMS substrates. Sci. Rep. 7, 46739(1–7) (2017).

    ADS 

    Google Scholar
     

  • 6.

    Li, F., Hou, H., Yin, J. & Jiang, X. Near-infrared light-responsive dynamic wrinkle patterns. Sci. Adv. 4, eaar57622 (2018).


    Google Scholar
     

  • 7.

    Troyano, J. et al. Reversible thermochromic polymeric thin films made of ultrathin 2D crystals of coordination polymers based on copper(I)-thiophenolates. Adv. Funct. Mater. 28, 1704040 (2018).


    Google Scholar
     

  • 8.

    Döbbelin, M. et al. Multiresponsive PEDOT-I onic liquid materials for the design of surfaces with switchable wettability. Adv. Funct. Mater. 19, 3326–3333 (2009).


    Google Scholar
     

  • 9.

    Li, D., Yu, S.-H. & Jiang, H.-L. From UV to near-infrared light-responsive metal-organic framework composites: plasmon and upconversion enhanced photocatalysis. Adv. Mater. 30, 1707377 (2018).


    Google Scholar
     

  • 10.

    Jochum, F. D. & Theato, P. Temperature- and light-responsive smart polymer materials. Chem. Soc. Rev. 42, 7468–7483 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Wei, X., Yu, L., Jin, X., Wang, D. & Chen, G. Z. Solar-thermochromism of pseudocrystalline nanodroplets of ionic liquid-Ni-II complexes immobilized inside translucent microporous PVDF films. Adv. Mater. 21, 776–780 (2009).

    CAS 

    Google Scholar
     

  • 12.

    Fernandes, L. C. et al. Ionic-liquid-based printable materials for thermochromic and thermoresistive applications. ACS Appl. Mater. Interfaces. 11, 20316–20324 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Faucheu, J., Bourgeat-Lami, E. & Prevot, V. A review of vanadium dioxide as an actor of nanothermochromism: challenges and perspectives for polymer nanocomposites. Adv. Eng. Mater. https://doi.org/10.1002/adem.201800438 (2018).

    Article 

    Google Scholar
     

  • 14.

    Zhang, H., Han, J. S. & Yang, B. Structural fabrication and functional modulation of nanoparticle-polymer composites. Adv. Funct. Mater. 20, 1533–1550 (2010).

    CAS 

    Google Scholar
     

  • 15.

    Kang, L. T. et al. Nanoporous thermochromic VO2 films with low optical constants, enhanced luminous transmittance and thermochromic properties. ACS Appl. Mater. Interfaces. 3, 135–138 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Ionov, L., Synytska, A. & Diez, S. Temperature-induced size-control of bioactive surface patterns. Adv. Funct. Mater. 18, 1501–1508 (2008).

    CAS 

    Google Scholar
     

  • 17.

    Zareie, H. M., Boyer, C., Bulmus, V., Nateghi, E. & Davis, T. P. Temperature-responsive self-assembled monolayers of oligo(ethylene glycol): control of biomolecular recognition. ACS Nano 2, 757–765 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Shen, Y. et al. Gold nanoparticles coated with a thermosensitive hyperbranched polyelectrolyte: towards smart temperature and pH nanosensors. Angew. Chem. Int. Edit. 47, 2227–2230 (2008).

    CAS 

    Google Scholar
     

  • 19.

    Karg, M., Pastoriza-Santos, I., Perez-Juste, J., Hellweg, T. & Liz-Marzan, L. M. Nanorod-coated PNIPAM microgels: thermoresponsive optical properties. Small. 3, 1222–1229 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Qin, J., Jo, Y. S. & Muhammed, M. Coating nanocrystals with amphiphilic thermosensitive copolymers. Angew. Chem. Int. Edit. 48, 7845–7849 (2009).

    CAS 

    Google Scholar
     

  • 21.

    Li, D. X. et al. Thermosensitive nanostructures comprising gold nanoparticles grafted with block copolymers. Adv. Funct. Mater. 17, 3134–3140 (2007).

    CAS 

    Google Scholar
     

  • 22.

    Wu, J. et al. Co3O4 nanocrystals on single-walled carbon nanotubes as a highly efficient oxygen-evolving catalyst. Nano Res. 5, 521–530 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • 23.

    Wang, Y. Q., Zhang, Y. Y., Zhang, F. & Li, W. Y. One-pot synthesis of thermal responsive QDs-PNIPAM hybrid fluorescent microspheres by controlling the polymerization temperature at two different polymerization stages. J. Mater. Chem. 21, 6556–6562 (2011).

    CAS 

    Google Scholar
     

  • 24.

    Bühler, G., Thölmann, D. & Feldmann, C. One-pot synthesis of highly conductive indium tin oxide. Nanocryst. Adv. Mater. 19, 2224–2227 (2007).


    Google Scholar
     

  • 25.

    Choi, S. I., Nam, K. M., Park, B. K., Seo, W. S. & Park, J. T. Preparation and optical properties of colloidal, monodisperse, and highly crystalline ITO nanoparticles. Chem. Mater. 20, 2609–2611 (2008).

    CAS 

    Google Scholar
     

  • 26.

    Kanehara, M., Koike, H., Yoshinaga, T. & Teranishi, T. Indium tin oxide nanoparticles with compositionally tunable surface plasmon resonance frequencies in the near-IR region. J. Am. Chem. Soc. 131, 17736–17737 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Yun, J., Park, Y. H., Bae, T. S., Lee, S. & Lee, G. H. Fabrication of a completely transparent and highly flexible ITO nanoparticle electrode at room temperature. ACS Appl. Mater. Interfaces. 5, 164–172 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Milliron, D. J., Buonsanti, R., Llordes, A. & Helms, B. A. Constructing functional mesostructured materials from colloidal nanocrystal building blocks. Acc. Chem. Res. 47, 236–246 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 29.

    Luo, L., Bozyigit, D., Wood, V. & Niederberger, M. High-quality transparent electrodes spin-cast from preformed antimony-doped tin oxide nanocrystals for thin film optoelectronics. Chem. Mater. 25, 4901–4907 (2013).

    CAS 

    Google Scholar
     

  • 30.

    Lee, J. et al. A facile solution-phase approach to transparent and conducting ITO nanocrystal assemblies. J. Am. Chem. Soc. 134, 13410–13414 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Chen, Z. X. et al. Fabrication of highly transparent and conductive indium−tin oxide thin films with a high figure of merit via solution processing. Langmuir 29, 13836–13842 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Llordes, A., Garcia, G., Gazquez, J. & Milliron, D. J. Tunable near-infrared and visible-light transmittance in nanocrystal-in-glass composites. Nature 500, 323–327 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 33.

    Kang, Y., Walish, J. J., Gorishnyy, T. & Thomas, E. L. Broad-wavelength-range chemically tunable block-copolymer photonic gels. Nat. Mater. 6, 957–960 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Wang, T. & Radovanovic, P. V. Free electron concentration in colloidal indium tin oxide nanocrystals determined by their size and structure. J. Phys. Chem. C. 115, 406–413 (2011).

    CAS 

    Google Scholar
     

  • 35.

    Lu, Y., Liu, G. L. & Lee, L. P. High-density silver nanoparticle film with temperature-controllable interparticle spacing for a tunable surface enhanced raman scattering substrate. Nano Lett. 5, 5–9 (2005).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Zakharchenko, S., Puretskiy, N., Stoychev, G., Stamm, M. & Ionov, L. Temperature controlled encapsulation and release using partially biodegradable thermo- magneto-sensitive self-rolling tubes. Soft Matter 6, 2633–2636 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • 37.

    Stoychev, G., Puretskiy, N. & Ionov, L. Self-folding all-polymer thermoresponsive microcapsules. Soft Matter 7, 3277–3279 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • 38.

    Zakharchenko, S., Sperling, E. & Ionov, L. Fully biodegradable self-rolled polymer tubes: a candidate for tissue engineering scaffolds. Biomacromology 12, 2211–2215 (2011).

    CAS 

    Google Scholar
     

  • 39.

    Fujigaya, T., Morimoto, T., Niidome, Y. & Nakashima, N. NIR laser-driven reversible volume phase transition of single-walled carbon nanotube/poly( N -isopropylacrylamide) composite gels. Adv. Mater. 20, 3610–3614 (2008).

    CAS 

    Google Scholar
     

  • 40.

    Guo, W., Li, M. E. & Zhou, J. X. Modeling programmable deformation of self-folding all-polymer structures with temperature-sensitive hydrogels. Smart Mater. Struct. 22, 115028 (2013).

    ADS 

    Google Scholar
     

  • 41.

    Luchnikov, V., Kumar, K. & Stamm, M. Toroidal hollow-core microcavities produced by self-rolling of strained polymer bilayer films. J. Micromech. Microeng. 18, 035041 (2008).

    ADS 

    Google Scholar
     

  • 42.

    Yuan, C. et al. Shape forming by thermal expansion mismatch and shape memory locking in polymer/elastomer laminates. Smart Mater. Struct. 26, 105027 (2017).

    ADS 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *