CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Domínguez-Rodrigo, M. Is the “Savanna Hypothesis” a dead concept for explaining the emergence of the earliest hominins?. Curr. Anthropol. 55, 59–81 (2014).


    Google Scholar
     

  • 2.

    Cerling, T. E. et al. Woody cover and hominin environments in the past 6 million years. Nature 476, 52–56 (2011).

    ADS 

    Google Scholar
     

  • 3.

    Potts, R. Hominin evolution in settings of strong environmental variability. Q. Sci. Rev. 73, 1–13 (2013).

    ADS 

    Google Scholar
     

  • 4.

    Magill, C. R., Ashley, G. M. & Freeman, K. H. Ecosystem variability and early human habitats in eastern Africa. Proc. Natl Acad. Sci. USA 110, 1167–1174 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Levin, N. E. Environment and climate of early human evolution. Annu. Rev. Earth Planet. Sci. 43, 405–429 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • 6.

    Uno, K. T., Polissar, P. J., Jackson, K. E. & deMenocal, P. B. Neogene biomarker record of vegetation change in eastern Africa. Proc. Natl Acad. Sci. USA 113, 6355–6363 (2016).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Jacobs, B. F. Paleobotanical studies from tropical Africa: relevance to the evolution of forest, woodland, and savannah biomes. Phil. Trans. R. Soc. B 359, 1573–1583 (2004).

    PubMed 

    Google Scholar
     

  • 8.

    Beerling, D. J. & Osborne, C. P. The origin of the savanna biome. Glob. Chang. Biol. 12, 2023–2031 (2006).

    ADS 

    Google Scholar
     

  • 9.

    Bond, W. J. What limits trees in C4 grasslands and savannas?. Annu. Rev. Ecol. Evol. Syst. 39, 641–659 (2008).


    Google Scholar
     

  • 10.

    Cerling, T. E. et al. Global vegetation change through the Miocene/Pliocene boundary. Nature 389, 153–158 (1997).

    ADS 
    CAS 

    Google Scholar
     

  • 11.

    Ehleringer, J. R., Cerling, T. E. & Helliker, B. R. C4 photosynthesis, atmospheric CO2, and climate. Oecologia 112, 285–299 (1997).

    ADS 
    PubMed 

    Google Scholar
     

  • 12.

    Beerling, D. J. & Royer, D. L. Convergent cenozoic CO2 history. Nat. Geosci. 4, 418–420 (2011).

    ADS 
    CAS 

    Google Scholar
     

  • 13.

    Pagani, M., Zachos, J. C., Freeman, K. H., Tipple, B. & Bohaty, S. Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science 309, 600–603 (2005).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 14.

    Pagani, M., Freeman, K. H. & Arthur, M. A. Late Miocene atmospheric CO2 concentrations and the expansion of C4 grasses. Science 285, 876–879 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Bolton, C. T. et al. Decrease in coccolithophore calcification and CO2 since the middle Miocene. Nat. Commun. 7, 10284 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Herbert, T. D. et al. Late Miocene global cooling and the rise of modern ecosystems. Nat. Geosci. 9, 843–847 (2016).

    ADS 
    CAS 

    Google Scholar
     

  • 17.

    Sponheimer, M. et al. Isotopic evidence of early hominin diets. Proc. Natl Acad. Sci. USA 110, 10513–10518 (2013).

    ADS 
    CAS 

    Google Scholar
     

  • 18.

    Feakins, S. J. et al. Northeast African vegetation change over 12 my. Geology 41, 295–298 (2013).

    ADS 

    Google Scholar
     

  • 19.

    Ségalen, L., Lee-Thorp, J. A. & Cerling, T. E. Timing of C4 grass expansion across sub-Saharan Africa. J. Hum. Evol. 53, 549–559 (2007).

    PubMed 

    Google Scholar
     

  • 20.

    Pennington, R. T., Cronk, Q. C. B. & Richardson, J. A. Introduction and synthesis: plant phylogeny and the origin of major biomes. Phil. Trans. R. Soc. B. 359, 1455–1464 (2004).

    PubMed 

    Google Scholar
     

  • 21.

    Pennington, R. T., Richardson, J. E. & Lavin, M. Insights into the historical construction of species-rich biomes from dated plant phylogenies, neutral ecological theory and phylogenetic community structure. New Phytol. 172, 605–616 (2006).

    PubMed 

    Google Scholar
     

  • 22.

    Bytebier, B., Antonelli, A., Bellstedt, D. U. & Linder, H. P. Estimating the age of fire in the Cape flora of South Africa from an orchid phylogeny. Proc. R. Soc. B 278, 188–195 (2010).

    PubMed 

    Google Scholar
     

  • 23.

    Crisp, M. D., Burrows, G. E., Cook, L. G., Thornhill, A. H. & Bowman, D. M. Flammable biomes dominated by eucalypts originated at the Cretaceous-Palaeogene boundary. Nat. Comm. 2, 193 (2011).

    ADS 

    Google Scholar
     

  • 24.

    Vicentini, A., Barber, J. C., Aliscioni, S. S., Giussani, L. M. & Kellogg, E. A. The age of the grasses and clusters of origins of C4 photosynthesis. Glob. Chang. Biol. 14, 2963–2977 (2008).

    ADS 

    Google Scholar
     

  • 25.

    Scheiter, S. et al. Fire and fire-adapted vegetation promoted C4 expansion in the Late Miocene. New Phytol. 195, 653–666 (2012).

    PubMed 

    Google Scholar
     

  • 26.

    Ramírez, S. R., Gravendeel, B., Singer, R. B., Marshall, C. R. & Pierce, N. E. Dating the origin of the Orchidaceae from a fossil orchid with its pollinator. Nature 448, 1042–1045 (2007).

    ADS 

    Google Scholar
     

  • 27.

    Losos, J. B. & Schluter, D. Analysis of an evolutionary species–area relationship. Nature 408, 847–850 (2000).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Linder, H. P. & Verboom, G. A. The evolution of regional species richness: the history of the southern African flora. Annu. Rev. Ecol. Evol. Syst. 46, 393–412 (2015).


    Google Scholar
     

  • 29.

    Simon, M. F. et al. Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. Proc. Natl Acad. Sci. USA 106, 20359–20364 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Cardoso, D. et al. A molecular-dated phylogeny and biogeography of the monotypic legume genus Haplormosia, a missing African branch of the otherwise American-Australian Brongniartieae clade. Mol. Phylogenet. Evol. 107, 431–442 (2017).

    PubMed 

    Google Scholar
     

  • 31.

    Fritz, S. A. & Purvis, A. Selectivity in mammalian extinction risk and threat types: a new measure of phylogenetic signal strength in binary traits. Conserv. Biol. 24, 1042–1051 (2010).

    PubMed 

    Google Scholar
     

  • 32.

    Linder, H. P. East African Cenozoic vegetation history. Evol. Anthropol. 26, 300–312 (2017).

    PubMed 

    Google Scholar
     

  • 33.

    Retallack, G. J. Middle Miocene fossil plants from Fort Ternan (Kenya) and evolution of African grasslands. Paleobiology 18, 383–400 (1992).


    Google Scholar
     

  • 34.

    Uno, K. T. et al. Late Miocene to Pliocene carbon isotope record of differential diet change among East African herbivores. Proc. Natl. Acad. Sci. USA 108, 6509–6514 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Dart, R. A. Australopithecus africanus: the man-ape of South Africa. Nature 115, 195–199 (1925).

    ADS 

    Google Scholar
     

  • 36.

    Dembo, M. et al. The evolutionary relationships and age of Homo naledi: An assessment using dated Bayesian phylogenetic methods. J. Hum. Evol. 97, 17–26 (2016).

    PubMed 

    Google Scholar
     

  • 37.

    Davies, T. J. & Buckley, L. B. Phylogenetic diversity as a window into the evolutionary and biogeographic histories of present-day richness gradients for mammals. Phil. Trans. R. Soc. B 366, 2414–2425 (2011).

    PubMed 

    Google Scholar
     

  • 38.

    Maurin, O. et al. Savanna fire and the origins of the ‘underground forests’ of Africa. New Phytol. 204, 201–214 (2014).

    PubMed 

    Google Scholar
     

  • 39.

    Charles-Dominique, T. et al. Spiny plants, mammal browsers, and the origin of African savannas. Proc. Natl Acad. Sci. USA 113, E5572–E5579 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Bibi, F. A multi-calibrated mitochondrial phylogeny of extant Bovidae (Artiodactyla, Ruminantia) and the importance of the fossil record to systematics. BMC Evol. Biol. 13, 166 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Nyakatura, K. & Bininda-Emonds, O. Updating the evolutionary history of Carnivora (Mammalia): a new species-level supertree complete with divergence time estimates. BMC Biol. 10, 12 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Kyalangalilwa, B., Boatwright, J. S., Daru, B. H., Maurin, O. & van der Bank, M. Phylogenetic position and revised classification of Acacia s.l. (Fabaceae: Mimosoideae) in Africa, including new combinations Vachellia and Senegalia. Bot. J. Linn. Soc. 172, 500–523 (2013).


    Google Scholar
     

  • 43.

    Silvestro, D. & Michalak, I. raxmlGUI: a graphical front-end for RAxML. Org. Divers. Evol. 12, 335–337 (2012).


    Google Scholar
     

  • 44.

    Webb, C. O. & Donoghue, M. J. Phylomatic: tree assembly for applied phylogenetics. Mol. Ecol. Notes 5, 181–183 (2005).


    Google Scholar
     

  • 45.

    Drummond, A. J., Suchard, M. A., Xie, D. & Rambaut, A. Bayesian Phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Bell, C. D., Soltis, D. E. & Soltis, P. S. The age and diversification of the angiosperms re-revisited. Am. J. Bot. 97, 1296–1303 (2010).

    PubMed 

    Google Scholar
     

  • 47.

    Phillips, S. J. et al. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190, 231–259 (2006).


    Google Scholar
     

  • 48.

    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).


    Google Scholar
     

  • 49.

    Liu, C., Berry, P. M., Dawson, T. P. & Pearson, R. G. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28, 385–393 (2005).


    Google Scholar
     

  • 50.

    Blach-Overgaard, A., Svenning, J. C., Dransfield, J., Greve, M. & Balslev, H. Determinants of palm species distributions across Africa: the relative roles of climate, non-climatic environmental factors, and spatial constraints. Ecography 33, 380–391 (2010).


    Google Scholar
     

  • 51.

    Ratnam, J. et al. When is a ‘forest’ a savanna, and why does it matter?. Glob. Ecol. Biogeogr. 20, 653–660 (2011).


    Google Scholar
     

  • 52.

    Koenker, R. quantreg: Quantile Regression. R package version 5.05 (https://CRAN.R-project.org/package=quantreg, 2013).

  • 53.

    Richardson, J. E. et al. Rapid and recent origin of species richness in the Cape flora of South Africa. Nature 412, 181–183 (2001).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 54.

    Verboom, G. A. et al. Origin and diversification of the Greater Cape flora: ancient species repository, hot-bed of recent radiation, or both?. Mol. Phylog. Evol. 51, 44–53 (2009).


    Google Scholar
     

  • 55.

    Dynesius, M. & Jansson, R. Evolutionary consequences of changes in species’ geographical distributions driven by Milankovitch climate oscillations. Proc. Natl Acad. Sci. USA 97, 9115–9120 (2000).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 56.

    deMenocal, P. B. African climate change and faunal evolution during the Pliocene-Pleistocene. Earth Planet. Sci. Lett. 220, 3–24 (2004).

    ADS 
    CAS 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *