CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING

[ad_1]

  • 1.

    Belleau, B., Burba, J., Pindell, M. & Reiffenstein, J. Effect of deuterium substitution in sympathomimetic amines on adrenergic responses. Science 133, 102–104 (1961).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Gaffney, T. E., Hammar, C. G., Holmstedt, B. & McMahon, R. E. Ion specific detection of internal standards labeled with stable isotopes. Anal. Chem. 43, 307–310 (1971).

    CAS 

    Google Scholar
     

  • 3.

    Simmons, E. M. & Hartwig, J. F. On the interpretation of deuterium kinetic isotope effects in C–H bond functionalizations by transition-metal complexes. Angew. Chem. Int. Ed. 51, 3066–3072 (2012).

    CAS 

    Google Scholar
     

  • 4.

    Atzrodt, J., Derdau, V., Kerr, W. J. & Reid, M. Deuterium- and tritium-labelled compounds: applications in the life sciences. Angew. Chem. Int. Ed. 57, 1758–1784 (2018).

    CAS 

    Google Scholar
     

  • 5.

    Zachleder, V. et al. Stable isotope compounds-production, detection, and application. Biotechnol. Adv. 36, 784–797 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Derdau, V., Atzrod, J., Zimmermann, J., Kroll, C. & Bruckner, F. Hydrogen-deuterium exchange reactions of aromatic compounds and heterocycles by NaBD4-activated rhodium, platinum and palladium catalysts. Chem. Eur. J. 15, 10397–10404 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Elmore, C. S. In Annual Reports in Medicinal Chemistry Vol. 44 (ed. Macor, J. E.) 515–534 (Academic Press, 2009).

  • 8.

    Allen, P. H. M., Hickey, J., Kingston, L. P. & Wilkinson, D. J. Metal-catalysed isotopic exchange labelling: 30 years of experience in pharmaceutical R&D. J. Label Compd. Radiopharm 53, 731–738 (2010).

    CAS 

    Google Scholar
     

  • 9.

    Gant, T. G. Using deuterium in drug discovery: leaving the label in the drug. J. Med. Chem. 57, 3595–3611 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Mullard, A. Deuterated drugs draw heavier backing. Nat. Rev. Drug Discov. 15, 219–221 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Pirali, T., Serafini, M., Cargnin, S. & Genazzani, A. A. Applications of deuterium in medicinal chemistry. J. Med. Chem. 62, 5276–5297 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Mullard, A. FDA approves first drug for primary progressive multiple sclerosis. Nat. Rev. Drug Discov. 16, 305–305 (2017).

    PubMed 

    Google Scholar
     

  • 13.

    McGrath, N., Brichacek, A. M. & Njardarson, J. T. A graphical journey of innovative organic architectures that have improved our Lives. J. Chem. Educ. 87, 1348–1349 (2010).

    CAS 

    Google Scholar
     

  • 14.

    Butler, M. A., Iwasaki, M., Guengerich, F. P. & Kadlubar, F. F. Human cytochrome P-450PA (P-450IA2), the phenacetin O-deethylase, is primarily responsible for the hepatic 3- demethylation of caffeine and N-oxidation of carcinogenic arylamines. Proc. Natl Acad. Sci. USA 86, 7696–7700 (1989).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Bernhardt, R. Cytochrome P450: structure, function, and generation of reactive oxygen Species. Rev. Physiol. Biochem. Pharm. 127, 138 (1995).


    Google Scholar
     

  • 16.

    Furge, L. L. & Guengerich, F. P. Cytochrome P450 enzymes in drug metabolism and chemical toxicology. Biochem. Mol. Biol. Edu. 34, 66–74 (2006).

    CAS 

    Google Scholar
     

  • 17.

    Yengi, L. G., Leung, L. & Kao, J. The evolving role of drug metabolism in drug discovery and development. Pharm. Res. 24, 842–858 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Meyer, A. H. et al. Cytochrome P450-catalyzed dealkylation of atrazine by Rhodococcus sp. strain NI86/21 involves hydrogen atom transfer rather than single electron transfer. Dalton Trans. 43, 12175–12186 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Dang, N. L., Hughes, T. B., Miller, G. P. & Swamidass, S. J. Computationally assessing the bioactivation of drugs by N-dealkylation. Chem. Res. Toxicol. 31, 68–80 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Elison, C., Rapoport, H., Laursen, R. & Elliott, H. W. Effect of deuteration of N-CH3 group on potency and enzymatic N-demethylation of morphine. Science 134, 1078–1079 (1961).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Miller, G. A. & Mucller, S. C. The metabolism of methylated aminoazo dyes. J. Biol. Chem. 258, 14445–14449 (1983).


    Google Scholar
     

  • 22.

    Banach, T. E. & Dinnocenzo, J. P. Deprotonation of tertiary amine cation radicals. A direct experimental approach. J. Am. Chem. Soc. 111, 8646–8653 (1989).


    Google Scholar
     

  • 23.

    Baciocchi, E. et al. Oxidative N-demethylation of N,N-dimethylanilines catalysed by lignin peroxidase: a mechanistic insight by a kinetic deuterium isotope effect study. Chem. Commun. 36, 393–394 (2000).


    Google Scholar
     

  • 24.

    Guengerich, F. P. Kinetic deuterium isotope effects in cytochrome P450 oxidation reactions. J. Label. Compd. Radiopharm. 56, 428–431 (2013).

    CAS 

    Google Scholar
     

  • 25.

    Yuya, N., Masashi, H., & Wataru, M. Industrial process of mono- alkylating a piperidine nitrogen in piperidine derivatives with deuterated- alkyl. U.S. Patent WO2019049918A1 (2019).

  • 26.

    Jin, B., Dong, Q., Hung, G., & Kaldor, S. W. Heteroaromatic compounds as TYK2 inhibitors and their preparation. U.S. Patent WO2020086616A1 (2020).

  • 27.

    Manley, P. W., Blasco, F., Mestan, J. & Aichholz, R. The kinetic deuterium isotope effect as applied to metabolic deactivation of imatinib to the des-methyl metabolite, CGP74588. Bioorg. Medicinal Chem. 21, 3231–3239 (2013).

    CAS 

    Google Scholar
     

  • 28.

    Ratnikov, M. O. & Doyle, M. P. Mechanistic investigation of oxidative mannich reaction with tert-butyl hydroperoxide. The role of transition metal salt. J. Am. Chem. Soc. 135, 1549–1557 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 29.

    Shen, Z. et al. Trideuteromethylation enabled by a sulfoxonium metathesis reaction. Org. Lett. 21, 448–452 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Zhu, M. et al. Detosylative (deutero)alkylation of indoles and phenols with (deutero)alkoxides. Org. Lett. 21, 7073–7077 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Atzrodt, J., Derdau, V., Kerr, W. J. & Reid, M. C-H functionalisation for hydrogen isotope exchange. Angew. Chem. Int. Ed. 57, 3022–3047 (2018).

    CAS 

    Google Scholar
     

  • 32.

    Takahashi, M., Oshima, K. & Matsubara, S. Ruthenium catalyzed deuterium labelling of a-Carbon in primary alcohol and primary/secondary amine in D2O. Chem. Lett. 34, 192–193 (2005).

    CAS 

    Google Scholar
     

  • 33.

    Neubert, L. et al. Ruthenium-catalyzed selective α, β-deuteration of bioactive amines. J. Am. Chem. Soc. 134, 12239–12244 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Pieters, G. et al. Regioselective and stereospecific deuteration of bioactive aza compounds by the use of ruthenium nanoparticles. Angew. Chem. Int. Ed. 53, 230–234 (2014).

    CAS 

    Google Scholar
     

  • 35.

    Hale, L. V. A. & Szymczak, N. K. Stereoretentive deuteration of α-chiral amines with D2O. J. Am. Chem. Soc. 138, 13489–13492 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Kerr, W. J., Mudd, R. J., Reid, M., Atzrodt, J. & Derdau, V. Iridium-catalyzed Csp3-H activation for mild and selective hydrogen isotope exchange. ACS Catal. 8, 10895–10900 (2018).

    CAS 

    Google Scholar
     

  • 37.

    Chang, Y. et al. Catalytic deuterium incorporation within metabolically stable β-amino C–H bonds of drug molecules. J. Am. Chem. Soc. 141, 14570–14575 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Loh, Y. et al. Photoredox-catalyzed deuteration and tritiation of pharmaceutical compounds. Science 358, 1182–1187 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Liu, C. et al. Controllable deuteration of halogenated compounds by photocatalytic D2O splitting. Nat. Commun. 9, 80–88 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Sklyaruk, J., Borghs, J. C., El-Sepelgy, O. & Rueping, M. Catalytic C1 alkylation with methanol and isotope‐labeled methanol. Angew. Chem. Int. Ed. 58, 775–779 (2019).

    CAS 

    Google Scholar
     

  • 41.

    Zhang, M., Yuan, X., Zhu, C. & Xie, J. Deoxygenative deuteration of carboxylic acids with D2O. Angew. Chem. Int. Ed. 58, 312–316 (2019).

    CAS 

    Google Scholar
     

  • 42.

    Geng, H. et al. Practical synthesis of C1 deuterated aldehydes enabled by NHC catalysist. Nat. Cat. 2, 1071–1077 (2019).

    CAS 

    Google Scholar
     

  • 43.

    Liu, W. et al. Mesoionic carbene (MIC)-catalyzed H/D exchange at formyl groups. Chem 5, 2484–2494 (2019).

    CAS 

    Google Scholar
     

  • 44.

    Isin, E. M., Elmore, C. S., Nilsson, G. N., Thompson, R. A. & Weidolf, L. Use of radiolabeled compounds in drug metabolism and pharmacokinetic studies. Chem. Res. Toxicol. 25, 532–542 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Nelson, S. D. & Trager, W. F. The use of deuterium isotope effects to probe the active site properties, mechanism of cytochrome P450-catalyzed reactions, and mechanisms of metabolically dependent toxicity. Drug Metab. Dispos. 31, 1481–1498 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • 46.

    Dogutan, D. K. & Nocera, D. G. Artificial photosynthesis at efficiencies greatly exceeding that of natural photosynthesis. Acc. Chem. Res. 52, 3143–3148 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 47.

    Kisch, H. Semiconductor photocatalysis—mechanistic and synthetic aspects. Angew. Chem. Int. Ed. 52, 812–847 (2013).

    CAS 

    Google Scholar
     

  • 48.

    Kisch, H. Semiconductor photocatalysis for chemoselective radical coupling reactions. Acc. Chem. Res. 50, 1002–1010 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 49.

    Ghosh, I. et al. Organic semiconductor photocatalyst can bifunctionalize arenes and heteroarenes. Science 365, 360–366 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 50.

    Wang, X. et al. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    Kessler, F. K. et al. Functional carbon nitride materials-design strategies for electrochemical devices. Nat. Rev. Mater. 2, 17030 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 52.

    Qiu, C. et al. Highly crystalline K-intercalated polymeric carbon nitride for visible-light photocatalytic alkenes and alkynes deuterations. Adv. Sci. 6, 1801403–1801409 (2019).


    Google Scholar
     

  • 53.

    Schönherr, H. & Cernak, T. Profound methyl effects in drug discovery and a call for new C-H methylation reactions. Angew. Chem. Int. Ed. 52, 12256–12267 (2013).


    Google Scholar
     

  • 54.

    Chatterjee, J., Gilon, C., Hoffman, A. & Kessler, H. N-methylation of peptides: a new perspective in medicinal chemistry. Acc. Chem. Res. 41, 1331–1342 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 55.

    Barreiro, E. J., Kümmerle, A. E. & Fraga, C. A. M. The methylation effect in medicinal chemistry. Chem. Rev. 111, 5215–5246 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 56.

    White, T. R. et al. On-resin N-methylation of cyclic peptides for discovery of orally bioavailable scaffolds. Nat. Chem. Biol. 7, 810–817 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Chatterjee, J., Rechenmacher, F. & Kessler, H. N-methylation of peptides and proteins: an important element for modulating biological functions. Angew. Chem. Int. Ed. 52, 254–269 (2013).

    CAS 

    Google Scholar
     

  • 58.

    Natte, K., Neumann, H., Beller, M. & Jagadeesh, R. V. Transition-metal-catalyzed utilization of methanol as a C1 source in organic synthesis. Angew. Chem. Int. Ed. 56, 6384–6394 (2017).

    CAS 

    Google Scholar
     

  • 59.

    Cernak, T., Dykstra, K. D., Tyagarajan, S., Vachal, P. & Krska, S. W. The medicinal chemist’s toolbox for late stage functionalization of drug-like molecules. Chem. Soc. Rev. 45, 546–576 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 60.

    Kitamura, K. et al. Synthesis of [N-13CH3] drugs (chlorpromazine, triflupromazine and promazine). J. Label Compd. Radiopharm. 43, 865–872 (2000).

  • 61.

    Elmore, C. S. & Bragg, R. A. Isotope chemistry; a useful tool in the drug discovery arsenal. Bioorg. Med. Chem. Lett. 25, 167–171 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 62.

    Syroeshkin, A. et al. D/H control of chemical kinetics in water solutions under low deuterium concentrations. Chem. Eng. J. 377, 119827 (2019).


    Google Scholar
     

  • 63.

    Kitamura, K. et al. Dissociation constants of phenothiazine drugs incorporated in phosphatidylcholine bilayer of small unilamellar vesicles as determined by carbon-13 nuclear magnetic resonance spectrometric titration. BBA-Biomembranes 61-67, 2004 (1661).


    Google Scholar
     

  • 64.

    Li, Y., Sorribes, I., Yan, T., Junge, K. & Beller, M. Selective methylation of amines with carbon dioxide and H2. Angew. Chem. Int. Ed. 52, 12156–12160 (2013).

    CAS 

    Google Scholar
     

  • [ad_2]

    Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *