CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Craine, J. M., Froehle, J., Tilman, D. G., Wedin, D. A. & Chapin, F. S. The relationships among root and leaf traits of 76 grassland species and relative abundance along fertility and disturbance gradients. Oikos 93, 274–285. https://doi.org/10.1034/j.1600-0706.2001.930210.x (2001).

    Article 

    Google Scholar
     

  • 2.

    Song, M. H. et al. Different responses to availability and form of nitrogen in space and time explain species coexistence in an alpine meadow community after release from grazing. Glob. Change Biol. 18, 3100–3111 (2012).

    ADS 
    Article 

    Google Scholar
     

  • 3.

    Zhou, X. M. Alpine Kobresia meadows in China 51–62 (Science Press, Beijing, 2001).


    Google Scholar
     

  • 4.

    Fujita, Y., Robroek, B. J. M., de Ruiter, P. C., Heil, G. W. & Wassen, M. J. Increased N affects P uptake of eight grassland species: The role of root surface phosphatase activity. Oikos 119, 1665–1673. https://doi.org/10.1111/j.1600-0706.2010.18427.x (2010).

    CAS 
    Article 

    Google Scholar
     

  • 5.

    Güsewell, S. N:P ratios in terrestrial plants: Variation and functional significance. New Phytol. 164, 43–266. https://doi.org/10.1111/j.1469-8137.2004.01192.x (2004).

    Article 

    Google Scholar
     

  • 6.

    Xu, D. H. et al. Interactive effects of nitrogen and silicon addition on growth of five common plant species and structure of plant community in alpine meadow. CATENA 169, 80–89. https://doi.org/10.1016/j.catena.2018.05.017 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Dhamala, N. R., Rasmussen, J., Carlsson, G., Søegaard, K. & Eriksen, J. N transfer in three-species grass-clover mixtures with chicory, ribwort plantain or caraway. Plant Soil 413, 217–230. https://doi.org/10.1007/s11104-016-3088-6 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 8.

    Schaller, J. & Struyf, E. Silicon controls microbial decay and nutrient release of grass litter during aquatic decomposition. Hydrobiologia 709, 201–212. https://doi.org/10.1007/s10750-013-1449-1 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Schaller, J., Hines, J., Brackhage, C., Baucker, E. & Gessner, M. O. Silica decouples fungal growth and litter decomposition without changing responses to climate warming and N enrichment. Ecology 95, 3181–3189 (2014).

    Article 

    Google Scholar
     

  • 10.

    Marxen, A. et al. Interaction between silicon cycling and straw decomposition in a silicon deficient rice production system. Plant Soil 398, 153–163. https://doi.org/10.1007/s11104-015-2645-8 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 11.

    Sommer, M., Kaczoek, D., Kuzyakov, Y. & Breuer, J. Silicon pools and fluxes in soils and landscapes—a review. J. Plant Nutr. Soil Sci. 169, 310–329 (2006).

    CAS 
    Article 

    Google Scholar
     

  • 12.

    Bruning, B. & Rozema, J. Symbiotic nitrogen fixation in legumes: Perspectives for saline agriculture. Environ. Exp. Bot. 92, 134–143. https://doi.org/10.1016/j.envexpbot.2012.09.001 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 13.

    Detmann, K. C. et al. Silicon nutrition increases grain yield, which, in turn, exerts a feed-forward stimulation of photosynthetic rates via enhanced mesophyll conductance and alters primary metabolism in rice. New Phytol. 196, 752–762. https://doi.org/10.1111/j.1469-8137.2012.04299.x (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 14.

    Xu, D. H. et al. Influences of nitrogen, phosphorus and silicon addition on plant productivity and species richness in an alpine meadow. AoB Plants 7, plv125. https://doi.org/10.1093/aobpla/plv125 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Neu, S. & Schaller, J. Dudel EG (2017) Silicon availability modifies nutrient use efficiency and content, C:N:P stoichiometry, and productivity of winter wheat (Triticum aestivum L.). Sci. Rep. 7, 40829. https://doi.org/10.1038/srep40829 (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Schaller, J., Brackhage, C., Gessner, M. O., Bäker, E. & Dudel, E. G. Silicon supply modifies C:N:P stoichiometry and growth of Phragmites australis. Plant Biol. 14, 392–396. https://doi.org/10.1111/j.1438-8677.2011.00537.x (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 17.

    Schaller, J. et al. Plant diversity and functional groups affect Si and Ca pools in aboveground biomass of grassland systems. Oecologia 182, 277–286. https://doi.org/10.1007/s00442-016-3647-9 (2016).

    ADS 
    Article 
    PubMed 

    Google Scholar
     

  • 18.

    Johnson, S. N. et al. Silicon-induced root nodulation and synthesis of essential amino acids in a legume is associated with higher herbivore abundance. Funct. Ecol. 31, 1903–1909. https://doi.org/10.1111/1365-2435.12893 (2017).

    Article 

    Google Scholar
     

  • 19.

    Schaller, J., Hodson, M. J. & Struyf, E. Is relative Si/Ca availability crucial to the performance of grassland ecosystems?. Ecosphere 8, e01726. https://doi.org/10.1002/ecs2.1726 (2017).

    Article 

    Google Scholar
     

  • 20.

    Schoelynck, J. et al. Silicon–vegetation interaction in multiple ecosystems: A review. J. Veg. Sci. 25, 301–313. https://doi.org/10.1111/jvs.12055 (2014).

    Article 

    Google Scholar
     

  • 21.

    Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Funct. Ecol. 16, 545–556. https://doi.org/10.1046/j.1365-2435.2002.00664.x (2002).

    Article 

    Google Scholar
     

  • 22.

    Seyfferth, A. L. & Fendorf, S. Silicate mineral impacts on the uptake and storage of arsenic and plant nutrients in rice (Oryza sativa L.). Environ. Sci. Technol. 46, 13176–13183. https://doi.org/10.1021/es3025337 (2012).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 23.

    Song, Z., Liu, H., Zhao, F. & Xu, C. Ecological stoichiometry of N:P:Si in China’s grasslands. Plant Soil 380, 165–179. https://doi.org/10.1007/s11104-014-2084-y (2014).

    CAS 
    Article 

    Google Scholar
     

  • 24.

    Suter, M. et al. Nitrogen yield advantage from grass-legume mixtures is robust over a wide range of legume proportions and environmental conditions. Glob. Change Biol. 21, 2424–2438. https://doi.org/10.1111/gcb.12880 (2015).

    ADS 
    Article 

    Google Scholar
     

  • 25.

    Han, Y. et al. Response of soil nutrients and stoichiometry to elevated nitrogen deposition in alpine grassland on the Qinghai–Tibetan Plateau. Geoderma 343, 263–268. https://doi.org/10.1016/j.geoderma.2018.12.050 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 26.

    Fu, G. & Shen, Z. X. Response of alpine soils to nitrogen addition on the Tibetan Plateau: A meta-analysis. Appl. Soil Ecol. 114, 99–104. https://doi.org/10.1016/j.apsoil.2017.03.008 (2017).

    Article 

    Google Scholar
     

  • 27.

    Sillen, W. M. A. & Dieleman, W. I. J. Effects of elevated CO2 and N fertilization on plant and soil carbon pools of managed grasslands: A meta-analysis. Biogeosciences 9, 2247–2258 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 28.

    Malhi, S. S. et al. Total and light fraction organic C in a thin Black Chernozemic grassland soil as affected by 27 annual applications of six rates of fertilizer N. Nutr. Cycl. Agroecosyst. 66, 33–41. https://doi.org/10.1023/a:1023376905096 (2003).

    CAS 
    Article 

    Google Scholar
     

  • 29.

    Zhao, Y. et al. Nitrogen application increases phytolith carbon sequestration in degraded grasslands of North China. Ecol. Res. 31, 117–123. https://doi.org/10.1007/s11284-015-1320-0 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Ji, Z. et al. Silicon distribution in meadow steppe and typical steppe of northern China and its implications for phytolith carbon sequestration. Grass Forage Sci. 73, 482–492. https://doi.org/10.1111/gfs.12316 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 31.

    Reithmaier, G. M. S., Knorr, K. H., Arnhold, S., Planer-Friedrich, B. & Schaller, J. Enhanced silicon availability leads to increased methane production, nutrient and toxicant mobility in peatlands. Sci. Rep. https://doi.org/10.1038/s41598-017-09130-3 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Lu, M. et al. Responses of ecosystem nitrogen cycle to nitrogen addition: A meta-analysis. New Phytol. 189, 1040–1050. https://doi.org/10.1111/j.1469-8137.2010.03563.x (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 33.

    Song, Z. et al. Silicon regulation of soil organic carbon stabilization and its potential to mitigate climate change. Earth Sci. Rev. 185, 463–475. https://doi.org/10.1016/j.earscirev.2018.06.020 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 34.

    Gao, W. L. et al. Effects of nitrogen addition on soil inorganic N content and soil N mineralization of a cold-temperate coniferous forest in Great Xing’an Mountains. Acta Ecol. Sin. 35, 130–136. https://doi.org/10.1016/j.chnaes.2015.07.003 (2015).

    CAS 
    Article 

    Google Scholar
     

  • 35.

    Finzi, A. C., Canham, C. D. & Van Breemen, N. Canopy tree–soil interactions within temperate forests: Species effects on pH and cations. Ecol. Appl. 8, 447. https://doi.org/10.2307/2641083 (1998).

    Article 

    Google Scholar
     

  • 36.

    Tian, D. & Niu, S. A global analysis of soil acidification caused by nitrogen addition. Environ. Res. Lett. 10, 024019. https://doi.org/10.1088/1748-9326/10/2/024019 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 37.

    Rothwell, J. J., Futter, M. & Nand Dise, N. B. A classification and regression tree model of controls on dissolved inorganic nitrogen leaching from European forests. Environ. Pollut. 156, 544–552. https://doi.org/10.1016/j.envpol.2008.01.007 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 38.

    Kostic, L., Nikolic, N., Bosnic, D., Samardzic, J. & Nikolic, M. Silicon increases phosphorus (P) uptake by wheat under low P acid soil conditions. Plant Soil 419, 447–455. https://doi.org/10.1007/s11104-017-3364-0 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 39.

    Schaller, J. et al. Silicon increases the phosphorus availability of Arctic soils. Sci. Rep. 9, 449. https://doi.org/10.1038/s41598-018-37104-6 (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Dawar, K., Zaman, M., Rowarth, J. S., Blennerhassett, J. & Turnbull, M. H. Urease inhibitor reduces N losses and improves plant-bioavailability of urea applied in fine particle and granular forms under field conditions. Agric. Ecosyst. Environ. 144, 41–50 (2011).

    CAS 
    Article 

    Google Scholar
     

  • 41.

    Zhang, J. et al. Long-term N and P additions alter the scaling of plant nitrogen to phosphorus in a Tibetan alpine meadow. Sci. Total Environ. 625, 440–448. https://doi.org/10.1016/j.scitotenv.2017.12.292 (2018).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 42.

    Gao, Y., Ma, X. & Cooper, D. J. Short-term effect of nitrogen addition on nitric oxide emissions from an alpine meadow in the Tibetan plateau. Environ. Sci. Pollut. Res. 23, 12474–12479. https://doi.org/10.1007/s11356-016-6763-5 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 43.

    Song, L., Tian, P., Zhang, J. & Jin, G. Effects of three years of simulated nitrogen deposition on soil nitrogen dynamics and greenhouse gas emissions in a Korean pine plantation of northeast China. Sci. Total Environ. 609, 1303–1311. https://doi.org/10.1016/j.scitotenv.2017.08.017 (2017).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 44.

    Tian, L. et al. Vertical patterns and controls of soil nutrients in alpine grassland: Implications for nutrient uptake. Sci. Total Environ. 607–608, 855–864. https://doi.org/10.1016/j.scitotenv.2017.07.080 (2017).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 45.

    Ma, J. F. & Takahashi, E. Effect of silicate on phosphate availability for rice in a P-deficient soil. Plant Soil 133, 151–155. https://doi.org/10.1007/BF00009187 (1991).

    CAS 
    Article 

    Google Scholar
     

  • 46.

    Xu, X. L. et al. Nutrient limitation of alpine plants: Implications from leaf N:P stoichiometry and leaf δ15N. J. Plant Nutr. Soil Sci. 177, 378–387. https://doi.org/10.1002/jpln.201200061 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 47.

    Ma, J. F. et al. Characterization of the silicon uptake system and molecular mapping of the silicon transporter gene in rice. Plant Physiol. 136, 3284–3289. https://doi.org/10.1104/pp.104.047365 (2004).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Yang, B. J., Qiao, N., Xu, X. L. & Ouyang, H. Symbiotic nitrogen fixation by legumes in two Chinese grasslands estimated by 15N dilution technique. Nutr. Cycl. Agroecosyst. 91, 91–98. https://doi.org/10.1007/s10705-011-9448-y (2011).

    CAS 
    Article 

    Google Scholar
     

  • 49.

    Li, Z. C. et al. Impacts of silicon on biogeochemical cycles of carbon and nutrients in croplands. J. Integr. Agric. 17, 2182–2195. https://doi.org/10.1016/S2095-3119(18)62018-0 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 50.

    Epstein, E. Silicon: Its manifold roles in plants. Ann. Appl. Biol. 155, 155–160. https://doi.org/10.1111/j.1744-7348.2009.00343.x (2009).

    CAS 
    Article 

    Google Scholar
     

  • 51.

    Mali, M. & Aery, N. C. Silicon effects on nodule growth, dry-matter production, and mineral nutrition of cowpea (Vigna unguiculata). J. Plant Nutr. Soil Sci. 171, 835–840. https://doi.org/10.1002/jpln.200700362 (2008).

    CAS 
    Article 

    Google Scholar
     

  • 52.

    Liu, Z. P., Shao, M. A. & Wang, Y. Q. Spatial patterns of soil total nitrogen and soil total phosphorus across the entire loess plateau region of China. Geoderma 197–198, 67–78. https://doi.org/10.1016/j.geoderma.2012.12.011 (2013).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 53.

    Xu, B. C. et al. N:P ratio of the grass Bothriochloa ischaemum mixed with the legume Lespedeza davurica under varying water and fertilizer supplies. Plant Soil 400, 67–79. https://doi.org/10.1007/s11104-015-2714-z (2016).

    CAS 
    Article 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *