CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    You Y. Chemical tools for the generation and detection of singlet oxygen. Org Biomol Chem. 2018;16:4044–60.

    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Yang H, Villani RM, Wang H, Simpson MJ, Roberts MS, Tang M, et al. The role of cellular reactive oxygen species in cancer chemotherapy. J Exp Clin Cancer Res. 2018;37:018–0909.


    Google Scholar
     

  • 3.

    Timoshenko V. Singlet oxygen generation and detection for biomedical applications. In: Baraton M-I, editor. Sensors for environment, health and security. Dordrecht: Springer; 2009. p. 295–309.


    Google Scholar
     

  • 4.

    Lv W, Xia H, Zhang KY, Chen Z, Liu S, Huang W, et al. Photothermal-triggered release of singlet oxygen from an endoperoxide-containing polymeric carrier for killing cancer cells. Mater Horiz. 2017;4:1185–9.

    CAS 

    Google Scholar
     

  • 5.

    DeRosa MC, Crutchley RJ. Photosensitized singlet oxygen and its applications. Coord Chem Rev. 2002;233-234:351–71.

    CAS 

    Google Scholar
     

  • 6.

    Sun D, Pang X, Cheng Y, Ming J, Xiang S, Zhang C, et al. Ultrasound-switchable nanozyme augments sonodynamic therapy against multidrug-resistant bacterial infection. ACS Nano. 2020;14:2063–76.

    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Harada A, Ono M, Yuba E, Kono K. Titanium dioxide nanoparticle-entrapped polyion complex micelles generate singlet oxygen in the cells by ultrasound irradiation for sonodynamic therapy. Biomater Sci. 2013;1:65–73.

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Costley D, Nesbitt H, Ternan N, Dooley J, Huang YY, Hamblin MR, et al. Sonodynamic inactivation of Gram-positive and Gram-negative bacteria using a Rose Bengal-antimicrobial peptide conjugate. Int J Antimicrob Agents. 2017;49:31–6.

    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Redmond RW, Gamlin JN. A compilation of singlet oxygen yields from biologically relevant molecules. Photochem Photobiol. 1999;70:391–475.

    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Fan J, Fang G, Zeng F, Wang X, Wu S. Water-dispersible fullerene aggregates as a targeted anticancer prodrug with both chemo- and photodynamic therapeutic actions. Small. 2013;9:613–21.

    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Detrembleur C, Stoilova O, Bryaskova R, Debuigne A, Mouithys-Mickalad A, Jérôme R. Preparation of well-defined PVOH/C60 nanohybrids by cobalt-mediated radical polymerization of vinyl acetate. Macromol Rapid Commun. 2006;27:498–504.

    CAS 

    Google Scholar
     

  • 12.

    Sun M, Kiourti A, Wang H, Zhao S, Zhao G, Lu X, et al. Enhanced microwave hyperthermia of cancer cells with fullerene. Mol Pharmaceutics. 2016;13:2184–92.

    CAS 

    Google Scholar
     

  • 13.

    Wang S, Gao R, Zhou F, Selke M. Nanomaterials and singlet oxygen photosensitizers: potential applications in photodynamic therapy. J Mater Chem. 2004;14:487–93.

    CAS 

    Google Scholar
     

  • 14.

    Guldi DM, Prato M. Excited-state properties of C60 fullerene derivatives. Acc Chem Res. 2000;33:695–703.

    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Hoebeke M, Damoiseau X. Determination of the singlet oxygen quantum yield of bacteriochlorin a: a comparative study in phosphate buffer and aqueous dispersion of dimiristoyl-l-α-phosphatidylcholine liposomes. Photochem Photobio Sci. 2002;1:283–7.

    CAS 

    Google Scholar
     

  • 16.

    Nishiyama N, Morimoto Y, Jang WD, Kataoka K. Design and development of dendrimer photosensitizer-incorporated polymeric micelles for enhanced photodynamic therapy. Adv Drug Deliv Rev. 2009;61:327–38.

    CAS 
    PubMed 

    Google Scholar
     

  • 17.

    Zhao Y, Farrer NJ, Li H, Butler JS, McQuitty RJ, Habtemariam A, et al. De novo generation of singlet oxygen and ammine ligands by photoactivation of a platinum anticancer complex. Angew Chem Int Ed. 2013;52:13633–7.

    CAS 

    Google Scholar
     

  • 18.

    Pan X, Wang H, Wang S, Sun X, Wang L, Wang W, et al. Sonodynamic therapy (SDT): a novel strategy for cancer nanotheranostics. Sci China Life Sci. 2018;61:415–26.

    PubMed 

    Google Scholar
     

  • 19.

    Yumita N, Iwase Y, Imaizumi T, Sakurazawa A, Kaya Y, Nishi K, et al. Sonodynamically-induced anticancer effects by functionalized fullerenes. Anticancer Res. 2013;33:3145–51.

    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Costley D, Mc Ewan C, Fowley C, McHale AP, Atchison J, Nomikou N, et al. Treating cancer with sonodynamic therapy: a review. Int J Hyperth. 2015;31:107–17.

    CAS 

    Google Scholar
     

  • 21.

    Wan GY, Liu Y, Chen BW, Liu YY, Wang YS, Zhang N. Recent advances of sonodynamic therapy in cancer treatment. Cancer Biol Med. 2016;13:325–38.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Todorović Marković B, Jokanović V, Jovanović S, Kleut D, Dramićanin M, Marković Z. Surface chemical modification of fullerene by mechanochemical treatment. Appl Surf Sci. 2009;255:7537–41.


    Google Scholar
     

  • 23.

    Andrievsky GV, Kosevich MV, Vovk OM, Shelkovsky VS, Vashchenko LA. On the production of an aqueous colloidal solution of fullerenes. J Chem Soc Chem Comm. 1995:1281–82.

  • 24.

    Brant JA, Labille J, Bottero J-Y, Wiesner MR. Characterizing the impact of preparation method on fullerene cluster structure and chemistry. Langmuir. 2006;22:3878–85.

    CAS 
    PubMed 

    Google Scholar
     

  • 25.

    Dhawan A, Taurozzi JS, Pandey AK, Shan W, Miller SM, Hashsham SA, et al. Stable colloidal dispersions of C60 fullerenes in water: evidence for genotoxicity. Environ Sci Technol. 2006;40:7394–401.

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Hungerbuehler H, Guldi DM, Asmus KD. Incorporation of C60 into artificial lipid membranes. J Am Chem Soc. 1993;115:3386–7.

    CAS 

    Google Scholar
     

  • 27.

    Andersson T, Nilsson K, Sundahl M, Westman G, Wennerström O. C60 embedded in γ-cyclodextrin: a water-soluble fullerene. J Chem Soc Chem Commun. 1992;8:604–6.


    Google Scholar
     

  • 28.

    Yamakoshi YN, Yagami T, Fukuhara K, Sueyoshi S, Miyata N. Solubilization of fullerenes into water with polyvinylpyrrolidone applicable to biological tests. J Chem Soc Chem Commun. 1994:517–8.

  • 29.

    Ohata T, Ishihara K, Iwasaki Y, Sangsuwan A, Fujii S, Sakurai K, et al. Water-soluble complex formation of fullerenes with a biocompatible polymer. Polym J. 2016;48:999–1005.

    CAS 

    Google Scholar
     

  • 30.

    Lee AR. Phospholipid polymer, 2-methacryloyloxyethyl phosphorylcholine and its skin barrier function. Arch Pharm Res. 2004;27:1177–82.

    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Iwasaki Y, Ishihara K. Cell membrane-inspired phospholipid polymers for developing medical devices with excellent biointerfaces. Sci Technol Adv Mater. 2012;13:1468–6996.


    Google Scholar
     

  • 32.

    Yudasaka M, Yomogida Y, Zhang M, Tanaka T, Nakahara M, Kobayashi N, et al. Near-infrared photoluminescent carbon nanotubes for imaging of brown fat. Sci Rep. 2017;7:44760.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Xu FM, Xu JP, Ji J, Shen JC. A novel biomimetic polymer as amphiphilic surfactant for soluble and biocompatible carbon nanotubes (CNTs). Colloids Surf B Biointerfaces. 2008;67:67–72.

    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Ishihara K. Blood-compatible surfaces with phosphorylcholine-based polymers for cardiovascular medical devices. Langmuir. 2019;35:1778–87.

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Ishihara K, Mu M, Konno T. Water-soluble and amphiphilic phospholipid copolymers having 2-methacryloyloxyethyl phosphorylcholine units for the solubilization of bioactive compounds. J Biomater Sci Polym Ed. 2018;29:844–62.

    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Ishihara K. Revolutionary advances in 2-methacryloyloxyethyl phosphorylcholine polymers as biomaterials. J Biomed Mater Res Part A. 2019;107A:933–43.


    Google Scholar
     

  • 37.

    Gollmer A, Arnbjerg J, Blaikie FH, Pedersen BW, Breitenbach T, Daasbjerg K, et al. Singlet Oxygen Sensor Green®: photochemical behavior in solution and in a mammalian cell. Photochem Photobiol. 2011;87:671–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    Mitsukami Y, Donovan MS, Lowe AB, McCormick CL. Water-soluble polymers. 81. Direct synthesis of hydrophilic styrenic-based homopolymers and block copolymers in aqueous solution via RAFT. Macromolecules. 2001;34:2248–56.

    CAS 

    Google Scholar
     

  • 39.

    Takahashi T, Kono K, Itoh T, Emi N, Takagishi T. Synthesis of novel cationic lipids having polyamidoamine dendrons and their transfection activity. Bioconjugate Chem. 2003;14:764–73.

    CAS 

    Google Scholar
     

  • 40.

    Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M, Kimura M, et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat Nanotechnol. 2011;6:815–23.

    CAS 
    PubMed 

    Google Scholar
     

  • 41.

    Adolphi U, Kulicke W-M. Coil dimensions and conformation of macromolecules in aqueous media from flow field-flow fractionation/multi-angle laser light scattering illustrated by studies on pullulan. Polymer. 1997;38:1513–9.

    CAS 

    Google Scholar
     

  • 42.

    Bruns W. The second osmotic virial coefficient of polymer solutions. Macromolecules. 1996;29:2641–3.

    CAS 

    Google Scholar
     

  • 43.

    Matsuda Y, Kobayashi M, Annaka M, Ishihara K, Takahara A. Dimensions of a free linear polymer and polymer immobilized on silica nanoparticles of a zwitterionic polymer in aqueous solutions with various ionic strengths. Langmuir. 2008;24:8772–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Giacomelli C, Le Men L, Borsali R, Lai-Kee-Him J, Brisson A, Armes SP, et al. Phosphorylcholine-based pH-responsive diblock copolymer micelles as drug delivery vehicles: light scattering, electron microscopy, and fluorescence experiments. Biomacromolecules. 2006;7:817–28.

    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *