CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Little, B. et al. Galileo images of lightning on Jupiter. Icarus 142, 306–323 (1999).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 2.

    Borucki, W. J., Bar-Nun, A., Scarf, F. L., Cook, A. F. II & Hunt, G. E. Lightning activity on Jupiter. Icarus 52, 492–502 (1982).

    ADS 
    Article 

    Google Scholar
     

  • 3.

    Borucki, W. J. & Williams, M. A. Lightning in the jovian water cloud. J. Geophys. Res. Atmos. 91, 9893–9903 (1986).

    ADS 
    Article 

    Google Scholar
     

  • 4.

    Danielson, G. E., Kupferman, P. N., Johnson, T. V. & Soderblom, L. A. Radiometric performance of the Voyager cameras. J. Geophys. Res. Space Phys. 86, 8683–8689 (1981).

    ADS 
    Article 

    Google Scholar
     

  • 5.

    Smith, B. A. et al. Voyager imaging experiment. Space Sci. Rev. 21, 103–127 (1977).

    ADS 
    Article 

    Google Scholar
     

  • 6.

    Borucki, W. J., McKay, C. P., Jebens, D., Lakkaraju, H. S. & Vanajakshi, C. T. Spectral irradiance measurements of simulated lightning in planetary atmospheres. Icarus 123, 336–344 (1996).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 7.

    Baines, K. H. et al. Polar lightning and decadal-scale cloud variability on Jupiter. Science 318, 226–229 (2007).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 8.

    Dyudina, U. A., Ingersoll, A. P., Vasavada, A. R., Ewald, S. P. & the Galileo SSI Team. Monte Carlo radiative transfer modeling of lightning observed in Galileo images of Jupiter. Icarus 160, 336–349 (2002).

    ADS 
    Article 

    Google Scholar
     

  • 9.

    Dyudina, U. A. et al. Lightning on Jupiter observed in the Hα line by the Cassini imaging science subsystem. Icarus 172, 24–36 (2004).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 10.

    Yair, Y., Levin, Z. & Tzivion, S. Lightning generation in a Jovian thundercloud: results from an axisymmetric numerical cloud model. Icarus 115, 421–434 (1995).

    ADS 
    Article 

    Google Scholar
     

  • 11.

    Rinnert, K. Lightning on other planets. J. Geophys. Res. Atmos. 90, 6225–6237 (1985).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 12.

    Gierasch, P. J. et al. Observations of moist convection in Jupiter’s atmosphere. Nature 403, 628–630 (2000).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 13.

    Borucki, W. J. & Magalhaes, J. A. Analysis of Voyager 2 images of Jovian lighting. Icarus 96, 1–14 (1992).

    ADS 
    Article 

    Google Scholar
     

  • 14.

    Seiff, A. et al. Thermal structure of Jupiter’s atmosphere near the edge of a 5-μm hot spot in the north equatorial belt. J. Geophys. Res. Planets 103, 22,857–22,889 (1998).


    Google Scholar
     

  • 15.

    Pruppacher, H. R. & Klett, J. D. Microphysics of Clouds and Precipitation 2nd edn (Kluwer Academic, 1997).

  • 16.

    Becker, H. N. et al. The Juno radiation monitoring (RM) investigation. Space Sci. Rev. 213, 507–545 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 17.

    Janssen, M. A. et al. MWR: microwave radiometer for the Juno mission to Jupiter. Space Sci. Rev. 213, 139–185 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 18.

    Brown, S. et al. Prevalent lightning sferics at 600 megahertz near Jupiter’s poles. Nature 558, 87–90 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 19.

    Turman, B. N. Detection of lightning superbolts. J. Geophys. Res. Oceans Atmos. 82, 2566–2568 (1977).

    ADS 
    Article 

    Google Scholar
     

  • 20.

    Holzworth, R. H., McCarthy, M. P., Brundell, J. B., Jacobson, A. R. & Rodger, C. J. Global distribution of superbolts. J. Geophys. Res. Atmos. 124, 9,996–10,005 (2019).


    Google Scholar
     

  • 21.

    Yair, Y., Levin, Z. & Tzivion, S. Microphysical processes and dynamics of a Jovian thundercloud. Icarus 114, 278–299 (1995).

    ADS 
    Article 

    Google Scholar
     

  • 22.

    Lewis, J. S. The clouds of Jupiter and the NH3–H2O and NH3–H2S systems. Icarus 10, 365–378 (1969).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 23.

    Weidenschilling, S. J. & Lewis, J. S. Atmospheric and cloud structures of the Jovian planets. Icarus 20, 465–476 (1973).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 24.

    Guillot, T., Stevenson, D. J., Atreya, S. K., Bolton, S. J. & Becker, H. N. Storms and the depletion of ammonia in Jupiter: I. Microphysics of “mushballs”. J. Geophys. Res. Planets 125, e2020JE006403 https://doi.org/10.1029/2020JE006403 (2020).

    Article 

    Google Scholar
     

  • 25.

    Kuhlman, K. M., MacGorman, D. R., Biggerstaff, M. I. & Krehbiel, P. R. Lightning initiation in the anvils of two supercell storms. Geophys. Res. Lett. 36, L07802 (2009).

    ADS 
    Article 

    Google Scholar
     

  • 26.

    Dye, J. E. & Bansemer, A. Electrification in mesoscale updrafts of deep stratiform and anvil clouds in Florida. J. Geophys. Res. Atmos. 124, 1021–1049 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 27.

    Dye, J. E. et al. Electric fields, cloud microphysics, and reflectivity in anvils of Florida thunderstorms. J. Geophys. Res. 112, D11215 (2007).

    ADS 
    Article 

    Google Scholar
     

  • 28.

    Stoker, C. R. Moist convection: a mechanism for producing the vertical structure of the jovian equatorial plumes. Icarus 67, 106–125 (1986).

    ADS 
    Article 

    Google Scholar
     

  • 29.

    Li, C. et al. The distribution of ammonia on Jupiter from a preliminary inversion of Juno microwave radiometer data. Geophys. Res. Lett. 44, 5317–5325 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 30.

    Bolton, S. J. et al. Jupiter’s interior and deep atmosphere: the initial pole-to-pole passes with the Juno spacecraft. Science 356, 821–825 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 31.

    de Pater, I. Jupiter’s zone-belt structure at radio wavelengths II. Comparison of observations with model atmosphere calculations. Icarus 68, 344–365 (1986).

    ADS 
    Article 

    Google Scholar
     

  • 32.

    Klaasen, K. P. et al. Inflight performance characteristics, calibration, and utilization of the Galileo solid-state imaging camera. Opt. Eng. 36, 3001–3027 (1997).

    ADS 
    Article 

    Google Scholar
     

  • 33.

    NAIF: planetary data system navigation node, https://naif.jpl.nasa.gov/pub/naif/JUNO/kernels/ (NASA/JPL, 2019).

  • 34.

    Acton, C. H. Ancillary data services of NASA’s navigation and ancillary information facility. Planet. Space Sci. 44, 65–70 (1996).

    ADS 
    Article 

    Google Scholar
     

  • 35.

    Mathworks Help Centre. deconvlucy: deblur image using Lucy-Richardson method, https://www.mathworks.com/help/images/ref/deconvlucy.html (Mathworks, 2019).

  • 36.

    O’Shea, D. C. Elements of Modern Optical Design (Wiley and Sons, 1985).

  • 37.

    Christian, H. J. et al. Global frequency and distribution of lightning as observed from space by the optical transient detector. J. Geophys. Res. Atmos. 108, 4005 (2003).

    ADS 
    Article 

    Google Scholar
     

  • 38.

    Nelson, J. & Baker, M. Charging of ice-vapor interfaces: applications to thunderstorms. Atmos. Chem. Phys. 3, 1237–1252 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 39.

    Yair, Y., Levin, Z. & Tzivion, S. Model interpretation of Jovian lightning activity and the Galileo probe results. J. Geophys. Res. Atmos. 103, 14,157–14,166 (1998).


    Google Scholar
     

  • 40.

    Hueso, R., Sanchez-Lavega, A. & Guillot, T. A model for large-scale convective storms in Jupiter. J. Geophys. Res. Planets 107, 5075 (2002).

    ADS 
    Article 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *