CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Ghosh, P. K. et al. Legume effect for enhancing productivity and nutrient use-efficiency in major cropping systems—an Indian perspective: a review. J. Sustain. Agric. 30, 59–86 (2007).

    Article 

    Google Scholar
     

  • 2.

    Unkovich, M. et al. Measuring Plant-associated Nitrogen Fixation in Agricultural Systems (Australian Centre for International Agricultural Research, 2008).

  • 3.

    Lambers, J. H. R., Harpole, W. S., Tilman, D., Knops, J. & Reich, P. B. Mechanisms responsible for the positive diversity–productivity relationship in Minnesota grasslands. Ecol. Lett. 7, 661–668 (2004).

    Article 

    Google Scholar
     

  • 4.

    Fornara, D. & Tilman, D. Ecological mechanisms associated with the positive diversity–productivity relationship in an N-limited grassland. Ecology 90, 408–418 (2009).

    CAS 
    Article 

    Google Scholar
     

  • 5.

    Marquard, E. et al. Plant species richness and functional composition drive overyielding in a six-year grassland experiment. Ecology 90, 3290–3302 (2009).

    Article 

    Google Scholar
     

  • 6.

    Taylor, B. N., Chazdon, R. L., Bachelot, B. & Menge, D. N. L. Nitrogen-fixing trees inhibit growth of regenerating Costa Rican rainforests. Proc. Natl Acad. Sci. USA 114, 8817–8822 (2017).

    CAS 
    Article 

    Google Scholar
     

  • 7.

    Lai, H. R., Hall, J. S., Batterman, S. A., Turner, B. L. & Breugel, Mvan Nitrogen fixer abundance has no effect on biomass recovery during tropical secondary forest succession. J. Ecol. 106, 1415–1427 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 8.

    Menge, D. N. L. & Chazdon, R. L. Higher survival drives the success of nitrogen-fixing trees through succession in Costa Rican rainforests. New Phytol. 209, 965–977 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 9.

    Xu, H. et al. Do N-fixing legumes promote neighbor diversity in the tropics? J. Ecol. 107, 229–239 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 10.

    Nasto, M. K. et al. Interactions among nitrogen fixation and soil phosphorus acquisition strategies in lowland tropical rain forests. Ecol. Lett. 17, 1282–1289 (2014).

    Article 

    Google Scholar
     

  • 11.

    Vitousek, P. M. Litterfall, nutrient cycling, and nutrient limitation in tropical forests. Ecology 65, 285–298 (1984).

    CAS 
    Article 

    Google Scholar
     

  • 12.

    Silvertown, J. Plant coexistence and the niche. Trends Ecol. Evol. 19, 605–611 (2004).

    Article 

    Google Scholar
     

  • 13.

    Phillips, R. P., Brzostek, E. & Midgley, M. G. The mycorrhizal-associated nutrient economy: a new framework for predicting carbon–nutrient couplings in temperate forests. New Phytol. 199, 41–51 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 14.

    Hedin, L. O., Brookshire, E. N. J., Menge, D. N. L. & Barron, A. R. The nitrogen paradox in tropical forest ecosystems. Annu. Rev. Ecol. Evol. Syst. 40, 613–635 (2009).

    Article 

    Google Scholar
     

  • 15.

    Ashton, I. W., Miller, A. E., Bowman, W. D. & Suding, K. N. Niche complementarity due to plasticity in resource use: plant partitioning of chemical N forms. Ecology 91, 3252–3260 (2010).

    Article 

    Google Scholar
     

  • 16.

    Adams, M. A., Turnbull, T. L., Sprent, J. I. & Buchmann, N. Legumes are different: leaf nitrogen, photosynthesis, and water use efficiency. Proc. Natl Acad. Sci. USA 113, 4098–4103 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 17.

    Afkhami, M. E. et al. Symbioses with nitrogen-fixing bacteria: nodulation and phylogenetic data across legume genera. Ecology 99, 502 (2018).

    Article 

    Google Scholar
     

  • 18.

    Menge, D. N. L. & Levin, S. A. Spatial heterogeneity can resolve the nitrogen paradox of tropical forests. Ecology 98, 1049–1061 (2017).

    Article 

    Google Scholar
     

  • 19.

    Fujikake, H. et al. Rapid and reversible nitrate inhibition of nodule growth and N2 fixation activity in soybean (Glycine max (L.) Merr.). Soil Sci. Plant Nutr. 48, 211–217 (2002).

    CAS 
    Article 

    Google Scholar
     

  • 20.

    Vitousek, P. M. & Howarth, R. W. Nitrogen limitation on land and in the sea: How can it occur? Biogeochemistry 13, 87–115 (1991).

    Article 

    Google Scholar
     

  • 21.

    Sullivan, B. W. et al. Correction for Sullivan et al., Spatially robust estimates of biological nitrogen (N) fixation imply substantial human alteration of the tropical N cycle. Proc. Natl Acad. Sci. USA 112, e4157–e4157 (2015).

    Article 

    Google Scholar
     

  • 22.

    Bauters, M., Mapenzi, N., Kearsley, E., Vanlauwe, B. & Boeckx, P. Facultative nitrogen fixation by legumes in the Central Congo basin is downregulated during late successional stages. Biotropica 48, 281–284 (2016).

    Article 

    Google Scholar
     

  • 23.

    Gei, M. et al. Legume abundance along successional and rainfall gradients in neotropical forests. Nat. Ecol. Evol. 2, 1104–1111 (2018).

    Article 

    Google Scholar
     

  • 24.

    Barron, A. R., Purves, D. W. & Hedin, L. O. Facultative nitrogen fixation by canopy legumes in a lowland tropical forest. Oecologia 165, 511–520 (2011).

    Article 

    Google Scholar
     

  • 25.

    Batterman, S. A., Wurzburger, N. & Hedin, L. O. Nitrogen and phosphorus interact to control tropical symbiotic N2 fixation: a test in Inga punctata. J. Ecol. 101, 1400–1408 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 26.

    Gehring, C., Muniz, F. H. & de Souza, L. A. Leguminosae along 2–25 years of secondary forest succession after slash-and-burn agriculture and in mature rain forest of Central Amazonia. J. Torrey Bot. Soc. 135, 388–400 (2008).

    Article 

    Google Scholar
     

  • 27.

    Menge, D. N. L. et al. Why are nitrogen-fixing trees rare at higher compared to lower latitudes? Ecology 98, 3127–3140 (2017).

    Article 

    Google Scholar
     

  • 28.

    Menge, D. N. L., Lichstein, J. W. & Ángeles-Pérez, G. Nitrogen fixation strategies can explain the latitudinal shift in nitrogen-fixing tree abundance. Ecology 95, 2236–2245 (2014).

    Article 

    Google Scholar
     

  • 29.

    Menge, D. N. L. et al. Patterns of nitrogen-fixing tree abundance in forests across Asia and America. J. Ecol. 107, 2598–2610 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 30.

    Batterman, S. A. et al. Key role of symbiotic dinitrogen fixation in tropical forest secondary succession. Nature 502, 224–227 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 31.

    Wolf, A. A., Funk, J. L. & Menge, D. N. L. The symbionts made me do it: legumes are not hardwired for high nitrogen concentrations but incorporate more nitrogen when inoculated. New Phytol. 213, 690–699 (2016).

    Article 

    Google Scholar
     

  • 32.

    Johnson, D. J., Beaulieu, W. T., Bever, J. D. & Clay, K. Conspecific negative density dependence and forest diversity. Science 336, 904–907 (2012).

    CAS 
    Article 

    Google Scholar
     

  • 33.

    Adler, P. B. et al. Competition and coexistence in plant communities: intraspecific competition is stronger than interspecific competition. Ecol. Lett. 21, 1319–1329 (2018).

    Article 

    Google Scholar
     

  • 34.

    Sprent, J. I. Legume Nodulation: A Global Perspective (Wiley-Blackwell, 2009).

  • 35.

    Corrales, A., Mangan, S., Turner, B. L. & Dalling, J. W. An ectomycorrhizal nitrogen economy facilitates monodominance in a neotropical forest. Ecol. Lett. 19, 383–392 (2016).

    Article 

    Google Scholar
     

  • 36.

    Temperton, V. M., Mwangi, P. N., Scherer-Lorenzen, M., Schmid, B. & Buchmann, N. Positive interactions between nitrogen-fixing legumes and four different neighbouring species in a biodiversity experiment. Oecologia 151, 190–205 (2007).

    Article 

    Google Scholar
     

  • 37.

    Tedersoo, L. et al. Global database of plants with root-symbiotic nitrogen fixation: NodDB. J. Veg. Sci. 213, 690–699 (2018).


    Google Scholar
     

  • 38.

    Sullivan, B. W. et al. Spatially robust estimates of biological nitrogen (N) fixation imply substantial human alteration of the tropical N cycle. Proc. Natl Acad. Sci. USA 111, 8101–8106 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 39.

    Taylor, B. N., Chazdon, R. L. & Menge, D. N. L. Successional dynamics of nitrogen fixation and forest growth in regenerating Costa Rican rainforests. Ecology 100, e02637 (2019).

    Article 

    Google Scholar
     

  • 40.

    Condit, R. Tropical Forest Census Plots: Methods and Results from Barro Colorado Island, Panama and a comparison With Other Plots (Springer Science & Business Media, 1998).

  • 41.

    Anderson-Teixeira, K. J. et al. CTFS-ForestGEO: a worldwide network monitoring forests in an era of global change. Glob. Chang. Biol. 21, 1365–2486 (2015).

    Article 

    Google Scholar
     

  • 42.

    Global Soil Data Task Group. Global Gridded Surfaces of Selected Soil Characteristics (International Geosphere–Biosphere Programme—Data and Information System). Data set. Available on-line http://www.daac.ornl.gov from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, TN, USA. https://doi.org/10.3334/ORNLDAAC/569 (2000).

  • 43.

    Yang, X., Post, W. M., Thornton, P. E. & Jain, A. K. Global Gridded Soil Phosphorus Distribution Maps at 0.5-degree Resolution. Data set. Available on-line [http://www.daac.ornl.gov] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, TN, USA. https://doi.org/10.3334/ornldaac/1223 (2014).

  • 44.

    Wiegand, T., Gunatilleke, C. V. S., Gunatilleke, I. A. U. N. & Huth, A. How individual species structure diversity in tropical forests. Proc. Natl Acad. Sci. USA 104, 19029–19033 (2007).

    CAS 
    Article 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *