CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    International Food Information Council Foundation. The 2015 food & health survey: consumer attitudes toward food safety, nutrition & health. Washington, DC; 2015. www.foodinsight.org/2015-food-health-survey-consumer-research.

  • 2.

    Story M, Neumark-Sztainer D, French S. Individual and environmental influences on adolescent eating behaviors. J Am Diet Assoc. 2002;102:S40–51.

    PubMed 

    Google Scholar
     

  • 3.

    Keskitalo K, Knaapila A, Kallela M, Palotie A, Wessman M, Sammalisto S, et al. Sweet taste preferences are partly genetically determined: identification of a trait locus on chromosome 16. Am J Clin Nutr. 2007;86:55–63.

    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Keskitalo K, Tuorila H, Spector TD, Cherkas LF, Knaapila A, Silventoinen K, et al. Same genetic components underlie different measures of sweet taste preference. Am J Clin Nutr. 2007;86:1663–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Bachmanov AA, Bosak NP, Floriano WB, Inoue M, Li X, Lin C, et al. Genetics of sweet taste preferences. Flavour Fragr J. 2011;26:286–94.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Pirastu N, Kooyman M, Traglia M, Robino A, Willems SM, Pistis G, et al. A Genome-Wide Association Study in isolated populations reveals new genes associated to common food likings. Rev Endocr Metab Disord. 2016;17:209–19.

    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Kim U, Wooding S, Riaz N, Jorde LB, Drayna D. Variation in the human TAS1R taste receptor genes. Chem Senses. 2006;31:599–611.

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Eny KM, Wolever TM, Corey PN, El-Sohemy A. Genetic variation in TAS1R2 (Ile191Val) is associated with consumption of sugars in overweight and obese individuals in 2 distinct populations. Am J Clin Nutr. 2010;92:1501–10.

    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Fushan AA, Simons CT, Slack JP, Drayna D. Association between common variation in genes encoding sweet taste signaling components and human sucrose perception. Chem Senses. 2010;35:579–92.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Eny KM, Wolever TMS, Fontaine-Bisson B, El-Sohemy A. Genetic variant in the glucose transporter type 2 is associated with higher intakes of sugars in two distinct populations. Physiol Genom. 2008;33:355–60.

    CAS 

    Google Scholar
     

  • 11.

    Eny KM, Corey PN, El-Sohemy A. Dopamine D2 receptor genotype (C957T) and habitual consumption of sugars in a free-living population of men and women. J Nutr Nutr. 2009;2:235–42.

    CAS 

    Google Scholar
     

  • 12.

    Chu AY, Workalemahu T, Paynter NP, Rose LM, Giulianini F, Tanaka T, et al. Novel locus including FGF21 is associated with dietary macronutrient intake. Hum Mol Genet. 2013;22:1895–902.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Schiffman SS, Graham BG, Sattely-Miller EA, Peterson-Dancy M. Elevated and sustained desire for sweet taste in African-Americans: a potential factor in the development of obesity. Nutrition. 2000;16:886–93.

    CAS 
    PubMed 

    Google Scholar
     

  • 14.

    Pepino MY, Mennella JA. Factors contributing to individual differences in sucrose preference. Chem Senses 2005;30(Supplement 1):i319–20.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Yamaguchi-Kabata Y, Nakazono K, Takahashi A, Saito S, Hosono N, Kubo M, et al. Japanese population structure, based on SNP genotypes from 7003 individuals compared to other ethnic groups: effects on population-based association studies. Am J Hum Genet. 2008;83:445–56.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006;38:904–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 17.

    Nakagawa-Senda H, Hachiya T, Shimizu A, Hosono S, Oze I, Watanabe M, et al. A genome-wide association study in the Japanese population identifies the 12q24 locus for habitual coffee consumption: The J-MICC Study. Sci Rep. 2018;8:1493.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Hachiya T, Komaki S, Hasegawa Y, Ohmomo H, Tanno K, Hozawa A, et al. Genome-wide meta-analysis in Japanese populations identifies novel variants at the TMC6-TMC8 and SIX3-SIX2 loci associated with HbA1c. Sci Rep. 2017;7:16147.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience. 2015;4:7.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    The 1000 Genomes Project Consortium. A global reference for human genetic variation. Nature. 2015;526:68–74.

    PubMed Central 

    Google Scholar
     

  • 22.

    Loh P-R, Danecek P, Palamara PF, Fuchsberger C, Reshef Y A, Finucane H K, et al. Reference-based phasing using the Haplotype Reference Consortium panel. Nat Genet. 2016;48:1443–8.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Das S, Forer L, Schönherr S, Sidore C, Locke AE, Kwong A, et al. Next-generation genotype imputation service and methods. Nat Genet. 2016;48:1284–7.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics 2010;26:2190–1.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet. 2011;88:76–82.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Matsuo K, Hamajima N, Shinoda M, Hatooka S, Inoue M, Takezaki T, et al. Gene-environment interaction between an aldehyde dehydrogenase-2 (ALDH2) polymorphism and alcohol consumption for the risk of esophageal cancer. Carcinogenesis. 2001;22:913–6.

    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Hurley TD, Edenberg HJ, Bosron WF. Expression and kinetic characterization of variants of human beta 1 beta 1 alcohol dehydrogenase containing substitutions at amino acid 47. J Biol Chem. 1990;265:16366–72.

    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Zakhari S. Overview: how is alcohol metabolized by the body? Alcohol Res Health. 2006;29:245–54.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Matsuo K. Alcohol dehydrogenase 2 His47Arg polymorphism influences drinking habit independently of aldehyde dehydrogenase 2 Glu487Lys polymorphism: analysis of 2,299 Japanese subjects. Cancer Epidemiol Biomark Prev. 2006;15:1009–13.

    CAS 

    Google Scholar
     

  • 30.

    Tsuchihashi-Makaya M, Serizawa M, Yanai K, Katsuya T, Takeuchi F, Fujioka A, et al. Gene-environmental interaction regarding alcohol-metabolizing enzymes in the Japanese general population. Hypertens Res 2009;32:207–13.

    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Shibuya A, Yoshida A. Frequency of the atypical aldehyde dehydrogenase-2 gene (ALDH2(2)) in Japanese and Caucasians. Am J Hum Genet. 1988;43:741–3.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Goedde HW, Agarwal DP, Fritze G, Meier-Tackmann D, Singh S, Beckmann G, et al. Distribution of ADH2 and ALDH2 genotypes in different populations. Hum Genet. 1992;88:344–6.

    CAS 
    PubMed 

    Google Scholar
     

  • 33.

    Li H, Borinskaya S, Yoshimura K, Kal’ina N, Marusin A, Stepanov VA, et al. Refined geographic distribution of the oriental ALDH2*504Lys (nee 487Lys) variant. Ann Hum Genet. 2009;73(Pt 3):335–45.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Macgregor S, Lind PA, Bucholz KK, Hansell NK, Madden PAF, Richter MM, et al. Associations of ADH and ALDH2 gene variation with self report alcohol reactions, consumption and dependence: an integrated analysis. Hum Mol Genet. 2009;18:580–93.

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Takeuchi F, Isono M, Nabika T, Katsuya T, Sugiyama T, Yamaguchi S, et al. Confirmation of ALDH2 as a major locus of drinking behavior and of its variants regulating multiple metabolic phenotypes in a Japanese population. Circ J. 2011;75:911–8.

    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Matoba N, Akiyama M, Ishigaki K, Kanai M, Takahashi A, Momozawa Y, et al. GWAS of 165,084 Japanese individuals identified nine loci associated with dietary habits. Nat Hum Behav. 2020;4:308–16.

    PubMed 

    Google Scholar
     

  • 37.

    Bosron WF, Li TK. Genetic polymorphism of human liver alcohol and aldehyde dehydrogenases, and their relationship to alcohol metabolism and alcoholism. Hepatology. 1986;6:502–10.

    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    Yoshida A, Wang G, Davé V. Determination of genotypes of human aldehyde dehydrogenase ALDH2 locus. Am J Hum Genet. 1983;35:1107–16.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Yoshida A, Huang IY, Ikawa M. Molecular abnormality of an inactive aldehyde dehydrogenase variant commonly found in Orientals. Proc Natl Acad Sci USA. 1984;81:258–61.

    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Enomoto N, Takase S, Yasuhara M, Takada A. Acetaldehyde metabolism in different aldehyde dehydrogenase-2 genotypes. Alcohol Clin Exp Res. 1991;15:141–4.

    CAS 
    PubMed 

    Google Scholar
     

  • 41.

    Takeshita T, Morimoto K, Mao X, Hashimoto T, Furuyama J. Characterization of the three genotypes of low Km aldehyde dehydrogenase in a Japanese population. Hum Genet. 1994;94:217–23.

    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Lewis SJ, Smith GD. Alcohol, ALDH2, and esophageal cancer: a meta-analysis which illustrates the potentials and limitations of a Mendelian randomization approach. Cancer Epidemiol Biomark Prev. 2005;14:1967–71.

    CAS 

    Google Scholar
     

  • 43.

    Hendershot CS, Collins SE, George WH, Wall TL, McCarthy DM, Liang T, et al. Associations of ALDH2 and ADH1B genotypes with alcohol-related phenotypes in Asian young adults. Alcohol Clin Exp Res. 2009;33:839–47.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Sakiyama M, Matsuo H, Nakaoka H, Yamamoto K, Nakayama A, Nakamura T, et al. Identification of rs671, a common variant of ALDH2, as a gout susceptibility locus. Sci Rep. 2016;6:25360.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Kampov-Polevoy AB. Association between preference for sweets and excessive alcohol intake: a review of animal and human studies. Alcohol Alcohol. 1999;34:386–95.

    CAS 
    PubMed 

    Google Scholar
     

  • 46.

    Thibodeau M, Pickering GJ. The role of taste in alcohol preference, consumption and risk behavior. Crit Rev Food Sci Nutr. 2017:1–17. https://doi.org/10.1080/10408398.2017.1387759.

  • 47.

    Bogucka-Bonikowska A, Scinska A, Koros E, Polanowska E, Habrat B, Woronowicz B, et al. Taste responses in alcohol-dependent men. Alcohol Alcohol. 2001;36:516–9.

    CAS 
    PubMed 

    Google Scholar
     

  • 48.

    Tremblay KA, Bona JM, Kranzler HR. Effects of a diagnosis or family history of alcoholism on the taste intensity and hedonic value of sucrose. Am J Addict. 2009;18:494–9.

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Conner MT, Booth DA. Preferred sweetness of a lime drink and preference for sweet over non-sweet foods, related to sex and reported age and body weight. Appetite. 1988;10:25–35.

    CAS 
    PubMed 

    Google Scholar
     

  • 50.

    Feigin MB, Sclafani A, Sunday SR. Species differences in polysaccharide and sugar taste preferences. Neurosci Biobehav Rev. 1987;11:231–40.

    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    Lanfer A, Knof K, Barba G, Veidebaum T, Papoutsou S, de Henauw S, et al. Taste preferences in association with dietary habits and weight status in European children: results from the IDEFICS study. Int J Obes. 2012;36:27–34.

    CAS 

    Google Scholar
     

  • 52.

    Lange LA, Kampov-Polevoy AB, Garbutt JC. Sweet liking and high novelty seeking: independent phenotypes associated with alcohol-related problems. Alcohol Alcohol. 2010;45:431–6.

    PubMed 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *