CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Gray, M. W., Burger, G. & Lang, B. F. The origin and early evolution of mitochondria. Genome Biol. 2, reviews1018.1–reviews1018.5 (2001).


    Google Scholar
     

  • 2.

    Amunts, A., Brown, A., Toots, J., Scheres, S. H. W. & Ramakrishnan, V. Ribosome. The structure of the human mitochondrial ribosome. Science 348, 95–98 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Desai, N., Brown, A., Amunts, A. & Ramakrishnan, V. The structure of the yeast mitochondrial ribosome. Science 355, 528–531 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Greber, B. J. et al. Ribosome. The complete structure of the 55S mammalian mitochondrial ribosome. Science 348, 303–308 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Sharma, M. R. et al. Structure of the mammalian mitochondrial ribosome reveals an expanded functional role for its component proteins. Cell 115, 97–108 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Florent Waltz, H. S., Bochler, A., Giegé, P., Hashem, Y. Cryo-EM structure of the RNA-rich plant mitochondrial ribosome. bioRxiv, https://doi.org/10.1101/777342 (2019).

  • 7.

    Ramrath, D. J. F. et al. Evolutionary shift toward protein-based architecture in trypanosomal mitochondrial ribosomes. Science 362, eaau7735 (2018).

  • 8.

    Koripella, R. K., Sharma, M. R., Risteff, P., Keshavan, P. & Agrawal, R. K. Structural insights into unique features of the human mitochondrial ribosome recycling. Proc. Natl Acad. Sci. USA 116, 8283–8288 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Kummer, E. et al. Unique features of mammalian mitochondrial translation initiation revealed by cryo-EM. Nature 560, 263–267 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Christian, B. E. & Spremulli, L. L. Mechanism of protein biosynthesis in mammalian mitochondria. Biochim. Biophys. Acta. 1819, 1035–1054 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Sharma, M. R., Kaushal, P. S., Gupta, M., Banavali, N. K. & Agrawal, R. K. In Translation in Mitochondria and Other Organelles (ed. Duchêne A.-M.) Ch. 1, 1–28 (Springer, 2013).

  • 12.

    Bhargava, K. & Spremulli, L. L. Role of the N- and C-terminal extensions on the activity of mammalian mitochondrial translational initiation factor 3. Nucleic Acids Res. 33, 7011–7018 (2005).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Gaur, R. et al. A single mammalian mitochondrial translation initiation factor functionally replaces two bacterial factors. Mol. Cell 29, 180–190 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Haque, M. E. & Spremulli, L. L. Roles of the N- and C-terminal domains of mammalian mitochondrial initiation factor 3 in protein biosynthesis. J. Mol. Biol. 384, 929–940 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Rorbach, J. et al. The human mitochondrial ribosome recycling factor is essential for cell viability. Nucleic Acids Res. 36, 5787–5799 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Koripella, R. K. et al. Structure of human mitochondrial translation initiation factor 3 bound to the small ribosomal subunit. iScience 12, 76–86 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Yassin, A. S. et al. Insertion domain within mammalian mitochondrial translation initiation factor 2 serves the role of eubacterial initiation factor 1. Proc. Natl Acad. Sci. USA 108, 3918–3923 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Hammarsund, M. et al. Identification and characterization of two novel human mitochondrial elongation factor genes, hEFG2 and hEFG1, phylogenetically conserved through evolution. Hum. Genet. 109, 542–550 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Tsuboi, M. et al. EF-G2mt is an exclusive recycling factor in mammalian mitochondrial protein synthesis. Mol. Cell 35, 502–510 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Antonicka, H., Sasarman, F., Kennaway, N. G. & Shoubridge, E. A. The molecular basis for tissue specificity of the oxidative phosphorylation deficiencies in patients with mutations in the mitochondrial translation factor EFG1. Hum. Mol. Genet. 15, 1835–1846 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Coenen, M. J. et al. Cytochrome c oxidase biogenesis in a patient with a mutation in COX10 gene. Ann. Neurol. 56, 560–564 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 22.

    Abbott, J. A., Francklyn, C. S. & Robey-Bond, S. M. Transfer, RNA. and human disease. Front. Genet. 5, 158 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Bugiardini, E. et al. MRPS25 mutations impair mitochondrial translation and cause encephalomyopathy. Hum. Mol. Genet. 28, 2711–2719 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Pearce, S., Nezich, C. L. & Spinazzola, A. Mitochondrial diseases: translation matters. Mol. Cell. Neurosci. 55, 1–12 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 25.

    AEvarsson, A. et al. Three-dimensional structure of the ribosomal translocase: elongation factor G from Thermus thermophilus. EMBO J. 13, 3669–3677 (1994).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Czworkowski, J., Wang, J., Steitz, T. A. & Moore, P. B. The crystal structure of elongation factor G complexed with GDP, at 2.7 A resolution. EMBO J. 13, 3661–3668 (1994).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Agrawal, R. K., Penczek, P., Grassucci, R. A. & Frank, J. Visualization of elongation factor G on the Escherichia coli 70S ribosome: the mechanism of translocation. Proc. Natl Acad. Sci. USA 95, 6134–6138 (1998).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Brilot, A. F., Korostelev, A. A., Ermolenko, D. N. & Grigorieff, N. Structure of the ribosome with elongation factor G trapped in the pretranslocation state. Proc. Natl Acad. Sci. USA 110, 20994–20999 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 29.

    Datta, P. P., Sharma, M. R., Qi, L., Frank, J. & Agrawal, R. K. Interaction of the G’ domain of elongation factor G and the C-terminal domain of ribosomal protein L7/L12 during translocation as revealed by cryo-EM. Mol. Cell 20, 723–731 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Frank, J. & Agrawal, R. K. A ratchet-like inter-subunit reorganization of the ribosome during translocation. Nature 406, 318–322 (2000).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Ramrath, D. J. et al. Visualization of two transfer RNAs trapped in transit during elongation factor G-mediated translocation. Proc. Natl Acad. Sci. USA 110, 20964–20969 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Ratje, A. H. et al. Head swivel on the ribosome facilitates translocation by means of intra-subunit tRNA hybrid sites. Nature 468, 713–716 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Agrawal, R. K., Heagle, A. B., Penczek, P., Grassucci, R. A. & Frank, J. EF-G-dependent GTP hydrolysis induces translocation accompanied by large conformational changes in the 70S ribosome. Nat. Struct. Biol. 6, 643–647 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Chen, Y., Feng, S., Kumar, V., Ero, R. & Gao, Y. G. Structure of EF-G-ribosome complex in a pretranslocation state. Nat. Struct. Mol. Biol. 20, 1077–1084 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Gao, Y. G. et al. The structure of the ribosome with elongation factor G trapped in the posttranslocational state. Science 326, 694–699 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Tourigny, D. S., Fernandez, I. S., Kelley, A. C. & Ramakrishnan, V. Elongation factor G bound to the ribosome in an intermediate state of translocation. Science 340, 1235490 (2013).

    PubMed 

    Google Scholar
     

  • 37.

    Zhou, J., Lancaster, L., Donohue, J. P. & Noller, H. F. Crystal structures of EF-G-ribosome complexes trapped in intermediate states of translocation. Science 340, 1236086 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Zhou, J., Lancaster, L., Donohue, J. P. & Noller, H. F. How the ribosome hands the A-site tRNA to the P site during EF-G-catalyzed translocation. Science 345, 1188–1191 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Bhargava, K., Templeton, P. & Spremulli, L. L. Expression and characterization of isoform 1 of human mitochondrial elongation factor G. Protein Expr. Purif. 37, 368–376 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Diaconu, M. et al. Structural basis for the function of the ribosomal L7/12 stalk in factor binding and GTPase activation. Cell 121, 991–1004 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 41.

    Helgstrand, M. et al. The ribosomal stalk binds to translation factors IF2, EF-Tu, EF-G and RF3 via a conserved region of the L12 C-terminal domain. J. Mol. Biol. 365, 468–479 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Rodnina, M. V., Peske, F., Peng, B. Z., Belardinelli, R. & Wintermeyer, W. Converting GTP hydrolysis into motion: versatile translational elongation factor G. Biol. Chem. 401, 131–142 (2019).

    PubMed 

    Google Scholar
     

  • 43.

    Rodnina, M. V., Savelsbergh, A., Katunin, V. I. & Wintermeyer, W. Hydrolysis of GTP by elongation factor G drives tRNA movement on the ribosome. Nature 385, 37–41 (1997).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Cool, R. H. & Parmeggiani, A. Substitution of histidine-84 and the GTPase mechanism of elongation factor Tu. Biochemistry 30, 362–366 (1991).

    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Daviter, T., Wieden, H. J. & Rodnina, M. V. Essential role of histidine 84 in elongation factor Tu for the chemical step of GTP hydrolysis on the ribosome. J. Mol. Biol. 332, 689–699 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • 46.

    Frank, J. & Agrawal, R. K. Ratchet-like movements between the two ribosomal subunits: their implications in elongation factor recognition and tRNA translocation. Cold Spring Harb. Symp. Quant. Biol. 66, 67–75 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 47.

    Schuwirth, B. S. et al. Structures of the bacterial ribosome at 3.5 A resolution. Science 310, 827–834 (2005).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 48.

    Kaushal, P. S., Sharma, M. R. & Agrawal, R. K. The 55S mammalian mitochondrial ribosome and its tRNA-exit region. Biochimie 114, 119–126 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Savelsbergh, A., Matassova, N. B., Rodnina, M. V. & Wintermeyer, W. Role of domains 4 and 5 in elongation factor G functions on the ribosome. J. Mol. Biol. 300, 951–961 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • 50.

    Hanada, T. et al. Translation ability of mitochondrial tRNAsSer with unusual secondary structures in an in vitro translation system of bovine mitochondria. Genes Cells 6, 1019–1030 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    Ohtsuki, T., Kawai, G. & Watanabe, K. The minimal tRNA: unique structure of Ascaris suum mitochondrial tRNA(Ser)(UCU) having a short T arm and lacking the entire D arm. FEBS Lett. 514, 37–43 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • 52.

    Pulk, A. & Cate, J. H. Control of ribosomal subunit rotation by elongation factor G. Science 340, 1235970 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    Mears, J. A. et al. A structural model for the large subunit of the mammalian mitochondrial ribosome. J. Mol. Biol. 358, 193–212 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Koc, E. C. et al. The large subunit of the mammalian mitochondrial ribosome. Analysis of the complement of ribosomal proteins present. J. Biol. Chem. 276, 43958–43969 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 55.

    O’Brien, T. W. Evolution of a protein-rich mitochondrial ribosome: implications for human genetic disease. Gene 286, 73–79 (2002).

    PubMed 

    Google Scholar
     

  • 56.

    Suzuki, T. et al. Structural compensation for the deficit of rRNA with proteins in the mammalian mitochondrial ribosome. Systematic analysis of protein components of the large ribosomal subunit from mammalian mitochondria. J. Biol. Chem. 276, 21724–21736 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 57.

    Eberly, S. L., Locklear, V. & Spremulli, L. L. Bovine mitochondrial ribosomes. Elongation factor specificity. J. Biol. Chem. 260, 8721–8725 (1985).

    CAS 
    PubMed 

    Google Scholar
     

  • 58.

    Ban, N., Nissen, P., Hansen, J., Moore, P. B. & Steitz, T. A. The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. Science 289, 905–920 (2000).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 59.

    Frank, J. et al. A model of protein synthesis based on cryo-electron microscopy of the E. coli ribosome. Nature 376, 441–444 (1995).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 60.

    Lorenzi, I. et al. Ribosome-associated Mba1 escorts Cox2 from insertion machinery to maturing assembly intermediates. Mol. Cell Biol. 36, 2782–2793 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 61.

    Englmeier, R., Pfeffer, S. & Forster, F. Structure of the human mitochondrial ribosome studied in situ by cryoelectron tomography. Structure 25, 1574–1581 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 62.

    Koripella, R. K. et al. A conserved histidine in switch-II of EF-G moderates release of inorganic phosphate. Sci. Rep. 5, 12970 (2015).

    ADS 
    PubMed 

    Google Scholar
     

  • 63.

    Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. CryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 64.

    Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 65.

    Rosenthal, P. B. & Henderson, R. Optimal determination of particle orientation, absolute hand, and contrast loss in single-particle electron cryomicroscopy. J. Mol. Biol. 333, 721–745 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • 66.

    Brown, A. et al. Structure of the large ribosomal subunit from human mitochondria. Science 346, 718–722 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 67.

    Pettersen, E. F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 68.

    Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 69.

    Rother, M. et al. ModeRNA server: an online tool for modeling RNA 3D structures. Bioinformatics 27, 2441–2442 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 70.

    Shi, H. & Moore, P. B. The crystal structure of yeast phenylalanine tRNA at 1.93 A resolution: a classic structure revisited. RNA 6, 1091–1105 (2000).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 71.

    Roy, A., Kucukural, A. & Zhang, Y. I-TASSER: a unified platform for automated protein structure and function prediction. Nat. Protoc. 5, 725–738 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 72.

    Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 73.

    Chen, V. B. et al. MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallogr. D Biol. Crystallogr. 66, 12–21 (2010).

    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *