CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Blount, Z. D. The unexhausted potential of E. coli. eLife 4, e05826 (2015).

    PubMed Central 

    Google Scholar
     

  • 2.

    Kaper, J. B., Nataro, J. P. & Mobley, H. L. Pathogenic Escherichia coli. Nat. Rev. Microbiol. 2, 123–140 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Tenaillon, O., Skurnik, D., Picard, B. & Denamur, E. The population genetics of commensal Escherichia coli. Nat. Rev. Microbiol. 8, 207–217 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Wassenaar, T. M. Insights from 100 years of research with probiotic E. coli. Eur. J. Microbiol. Immunol. 6, 147–161 (2016).


    Google Scholar
     

  • 5.

    Mirsepasi-Lauridsen, H. C., Vallance, B. A., Krogfelt, K. A. & Petersen, A. M. Escherichia coli pathobionts associated with inflammatory bowel disease. Clin. Microbiol. Rev. 32, e00060-18 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Smilack, J. D. Trimethoprim-sulfamethoxazole. Mayo Clin. Proc. 74, 730–734 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Stallmach, A. et al. Medical and surgical therapy of inflammatory bowel disease in the elderly—prospects and complications. J. Crohns Colitis 5, 177–188 (2011).

    PubMed 

    Google Scholar
     

  • 8.

    Haußmann, C. et al. Biosynthesis of pteridines in Escherichia coli. Structural and mechanistic similarity of dihydroneopterin-triphosphate epimerase and dihydroneopterin aldolase. J. Biol. Chem. 273, 17418–17424 (1998).

    PubMed 

    Google Scholar
     

  • 9.

    Giladi, M. et al. FolM, a new chromosomally encoded dihydrofolate reductase in Escherichia coli. J. Bacteriol. 185, 7015–7018 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Pribat, A. et al. FolX and FolM are essential for tetrahydromonapterin synthesis in Escherichia coli and Pseudomonas aeruginosa. J. Bacteriol. 192, 475–482 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 11.

    Gelfand, D. H. & Steinberg, R. A. Escherichia coli mutants deficient in the aspartate and aromatic amino acid aminotransferases. J. Bacteriol. 130, 429–440 (1977).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Lobritz, M. A. et al. Antibiotic efficacy is linked to bacterial cellular respiration. Proc. Natl Acad. Sci. USA 112, 8173–8180 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Belenky, P. et al. Bactericidal antibiotics induce toxic metabolic perturbations that lead to cellular damage. Cell. Rep. 13, 968–980 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Mitosch, K., Rieckh, G. & Bollenbach, T. Noisy response to antibiotic stress predicts subsequent single-cell survival in an acidic environment. Cell. Syst. 4, 393–403 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Zampieri, M., Zimmermann, M., Claassen, M. & Sauer, U. Nontargeted metabolomics reveals the multilevel response to antibiotic perturbations. Cell. Rep. 19, 1214–1228 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Zampieri, M. et al. Metabolic constraints on the evolution of antibiotic resistance. Mol. Syst. Biol. 13, 917 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Zampieri, M. et al. High-throughput metabolomic analysis predicts mode of action of uncharacterized antimicrobial compounds. Sci. Transl. Med. 10, eaal3973 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 18.

    Zampieri, M. et al. Regulatory mechanisms underlying coordination of amino acid and glucose catabolism in Escherichia coli. Nat. Commun. 10, 3354 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Anuforom, O., Wallace, G. R. & Piddock, L. V. The immune response and antibacterial therapy. Med. Microbiol. Immunol. 204, 151–159 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Rubin, B. K. & Tamaoki, J. Antibiotics as Anti-inflammatory and Immunomodulatory Agents (Springer Science & Business Media, 2005).

  • 21.

    Cho, I. et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 488, 621–626 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Schneditz, G. et al. Enterotoxicity of a nonribosomal peptide causes antibiotic-associated colitis. Proc. Natl Acad. Sci. USA 111, 13181–13186 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 23.

    Lopez, C. A., Kingsbury, D. D., Velazquez, E. M. & Bäumler, A. J. Collateral damage: microbiota-derived metabolites and immune function in the antibiotic era. Cell Host Microbe 16, 156–163 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Becattini, S., Taur, Y. & Pamer, E. G. Antibiotic-induced changes in the intestinal microbiota and disease. Trends Mol. Med. 22, 458–478 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Dornisch, E. et al. Biosynthesis of the enterotoxic pyrrolobenzodiazepine natural product tilivalline. Angew. Chem. Int. Ed. 56, 14753–14757 (2017).

    CAS 

    Google Scholar
     

  • 26.

    Routy, B. et al. Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359, 91–97 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Yang, J. H. et al. Antibiotic-induced changes to the host metabolic environment inhibit drug efficacy and alter immune function. Cell Host Microbe 22, 757–765 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Gopinath, S. et al. Topical application of aminoglycoside antibiotics enhances host resistance to viral infections in a microbiota-independent manner. Nat. Microbiol. 3, 611–621 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Park, H. B. et al. Bacterial autoimmune drug metabolism transforms an immunomodulator into structurally and functionally divergent antibiotics. Angew. Chem. Int. Ed. 59, 2–12 (2020).


    Google Scholar
     

  • 30.

    Oh, J., Patel, J., Park, H. B. & Crawford, J. M. β-Lactam biotransformations activate innate immunity. J. Org. Chem. 83, 7173–7179 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Wormser, G. P., Keusch, G. T. & Heel, R. C. Co-trimoxazole (trimethoprim-sulfamethoxazole): an updated review of its antibacterial activity and clinical efficacy. Drugs 24, 459–518 (1982).

    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Baker, D. J. et al. The binding of trimethoprim to bacterial dihydrofolate reductase. FEBS Lett. 126, 49–52 (1981).

    CAS 
    PubMed 

    Google Scholar
     

  • 33.

    Achari, A. et al. Crystal structure of the anti-bacterial sulfonamide drug target dihydropteroate synthase. Nat. Struct. Biol. 4, 490–497 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Okada, B. K. & Seyedsayamdost, M. R. Antibiotic dialogues: induction of silent biosynthetic gene clusters by exogenous small molecules. FEMS Microbiol. Rev. 41, 19–33 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Kim, C. S. et al. Characterization of autoinducer-3 atructure and biosynthesis in E. coli. ACS Cent. Sci. 6, 197–206 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Nougayrède, J. P. et al. Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science 313, 848–851 (2006).

    PubMed 

    Google Scholar
     

  • 37.

    Xue, M. et al. Structure elucidation of colibactin and its DNA cross-links. Science 365, eaax2685 (2019).

  • 38.

    Arthur, J. C. et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science 338, 120–123 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Arthur, J. C. et al. Microbial genomic analysis reveals the essential role of inflammation in bacteria-induced colorectal cancer. Nat. Commun. 5, 4724 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Cougnoux, A. et al. Small-molecule inhibitors prevent the genotoxic and protumoural effects induced by colibactin-producing bacteria. Gut 65, 278–285 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 41.

    Tomkovich, S. et al. Locoregional effects of microbiota in a preclinical model of colon carcinogenesis. Cancer Res. 77, 2620–2632 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Dejea, C. M. et al. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science 359, 592–597 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Wiegand, I., Hilpert, K. & Hancock, R. E. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 3, 163–175 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Thomas, A. H. et al. Fluorescence of pterin, 6-formylpterin, 6-carboxypterin and folic acid in aqueous solution: pH effects. Photochem. Photobiol. Sci. 1, 421–426 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Kim, Y., Kang, Y. & Baek, D. Oxidative synthesis of benzoylpteridines from benzylpteridines by potassium penmanganate. Bull. Korean Chem. Soc. 22, 141–144 (2001).

    CAS 

    Google Scholar
     

  • 46.

    Bermingham, A. & Derrick, J. P. The folic acid biosynthesis pathway in bacteria: evaluation of potential for antibacterial drug discovery. Bioessays 24, 637–648 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • 47.

    de Crécy-Lagard, V. et al. Comparative genomics of bacterial and plant folate synthesis and salvage: predictions and validations. BMC Genomics 8, 245 (2007).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Feirer, N. et al. A pterin-dependent signaling pathway regulates a dual-function diguanylate cyclase-phosphodiesterase controlling surface attachment in Agrobacterium tumefaciens. mBio 6, e00156-15 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Ahn, C., Byun, J. & Yim, J. Purification, cloning, and functional expression of dihydroneopterin triphosphate 2′-epimerase from Escherichia coli. J. Biol. Chem. 272, 15323–15328 (1997).

    CAS 
    PubMed 

    Google Scholar
     

  • 50.

    Shan, Y. et al. Genetic basis of persister tolerance to aminoglycosides in Escherichia coli. mBio 6, e00078-15 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Mathieu, A. et al. Discovery and function of a general core hormetic stress response in E. coli induced by sublethal concentrations of antibiotics. Cell. Rep. 17, 46–57 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 52.

    Kim, C. S. et al. Cellular stress upregulates indole signaling metabolites in Escherichia coli. Cell Chem. Biol. 27, 698–707 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 53.

    Perez, C. E., Park, H. B. & Crawford, J. M. Functional characterization of a condensation domain that links nonribosomal peptide and pteridine biosynthetic machineries in Photorhabdus luminescens. Biochemistry 57, 354–361 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 54.

    Brown, G. M. The biosynthesis of pteridines. Adv. Enzymol. Relat. Areas Mol. Biol 35, 35–77 (1971).

  • 55.

    Nichol, C. A. et al. Biosynthesis of tetrahydrobiopterin by de novo and salvage pathways in adrenal medulla extracts, mammalian cell cultures, and rat brain in vivo. Proc. Natl Acad. Sci. USA 80, 1546–1550 (1983).

    CAS 
    PubMed 

    Google Scholar
     

  • 56.

    Groehn, V. et al. Pteridine-based photoaffinity probes for nitric oxide synthase and aromatic amino acid hydroxylases. Helv. Chim. Acta 83, 2738–2750 (2000).

    CAS 

    Google Scholar
     

  • 57.

    Crabtree, M. J. et al. Critical role for tetrahydrobiopterin recycling by dihydrofolate reductase in regulation of endothelial nitric-oxide synthase coupling: relative importance of the de novo biopterin synthesis versus salvage pathways. J. Biol. Chem. 284, 28128–28136 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 58.

    Kirsch, M. et al. The autoxidation of tetrahydrobiopterin revisited. Proof of superoxide formation from reaction of tetrahydrobiopterin with molecular oxygen. J. Biol. Chem. 278, 24481–24490 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • 59.

    Oettl, K. & Reibnegger, G. Pteridines as inhibitors of xanthine oxidase: structural requirements. Biochim. Biophys. Acta 1430, 387–395 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 60.

    Vásquez-Vivar, J. Tetrahydrobiopterin, superoxide, and vascular dysfunction. Free Radic. Biol. Med. 47, 1108–1119 (2009).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 61.

    Kojima, S., Icho, T., Mori, H. & Arai, T. Enhancing potency of neopterin toward B-16 melanoma cell damage induced by UV-A irradiation and its possible application for skin tumor treatment. Anticancer Res. 15, 1975–1980 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • 62.

    Becker, C., Fantini, M. C. & Neurath, M. F. High resolution colonoscopy in live mice. Nat. Protoc. 1, 2900–2904 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 63.

    Dorrestein, P. C., Mazmanian, S. K. & Knight, R. Finding the missing links among metabolites, microbes, and the host. Immunity 40, 824–832 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 64.

    Kruis, W. et al. Maintaining remission of ulcerative colitis with the probiotic Escherichia coli Nissle 1917 is as effective as with standard mesalazine. Gut 53, 1617–1623 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 65.

    Palmela, C. et al. Adherent-invasive Escherichia coli in inflammatory bowel disease. Gut 67, 574–587 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 66.

    Rembacken, B. J. et al. Non-pathogenic Escherichia coli versus mesalazine for the treatment of ulcerative colitis: a randomised trial. Lancet 354, 635–639 (1999).

    CAS 
    PubMed 

    Google Scholar
     

  • 67.

    Smith, S. G. & Goodman, J. M. Assigning the stereochemistry of pairs of diastereoisomers using GIAO NMR shift calculation. J. Org. Chem. 74, 4597–4607 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 68.

    Kamanaka, M. et al. Expression of interleukin-10 in intestinal lymphocytes detected by an interleukin-10 reporter knockin tiger mouse. Immunity 25, 941–952 (2006).

    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *