CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Zhao, H., Kang, X. & Liu, L. Comb−coil polymer brushes on the surface of silica nanoparticles. Macromolecules 38, 10619–10622 (2005).

    ADS 
    CAS 

    Google Scholar
     

  • 2.

    Wang, X. et al. Surface emission characteristics of ZnO nanoparticles. Chem. Phys. Lett. 423, 361–365 (2006).

    ADS 
    CAS 

    Google Scholar
     

  • 3.

    Faramarzi, M. A. & Forootanfar, H. Biosynthesis and characterization of gold nanoparticles produced by laccase from Paraconiothyrium variabile. Colloids Surf. B 87, 23–27 (2011).

    CAS 

    Google Scholar
     

  • 4.

    Kanmani, S. S. & Ramachandran, K. Synthesis and characterization of TiO2/ZnO core/shell nanomaterials for solar cell applications. Renewable Energy 43, 149–156 (2012).

    CAS 

    Google Scholar
     

  • 5.

    Gopalakrishnan, K., Ramesh, C., Ragunathan, V., Thamilselvan, M. Antibacterial activity of Cu2O nanoparticles on E. coli synthesized from Tridax procumbens leaf extract and surface coating with polyaniline. Dig. J. Nanomater. Biostruct. 7, 833–839 (2012).

  • 6.

    Yang, Z. H., Zhuo, Y., Yuan, R. & Chai, Y. Q. An amplified electrochemical immunosensor based on in situ-produced 1-naphthol as electroactive substance and graphene oxide and Pt nanoparticles functionalized CeO2 nanocomposites as signal enhancer. Biosens. Bioelectron. 69, 321–327 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Kumar, S. G. & Rao, K. K. Tungsten-based nanomaterials (WO3 & Bi2WO6): Modifications related to charge carrier transfer mechanisms and photocatalytic applications. Appl. Surf. Sci. 355, 939–958 (2015).

    ADS 

    Google Scholar
     

  • 8.

    Hajizadeh, Z. & Maleki, A. Poly (ethylene imine)-modified magnetic halloysite nanotubes: A novel, efficient and recyclable catalyst for the synthesis of dihydropyrano[2,3-c]pyrazole derivatives. Mol. Catal. 460, 87–93 (2018).

    CAS 

    Google Scholar
     

  • 9.

    Bandala, E. R., Berli. M. Engineered nanomaterials (ENMs) and their role at the nexus of food, energy, and water. Mater. Sci. Energy Technol. 2, 29–40 (2019).

  • 10.

    Maleki, A., Hajizadeh, Z., Sharifi, V. & Emdadi, Z. A green, porous and eco-friendly magnetic geopolymer adsorbent for heavy metals removal from aqueous solutions. J. Clean. Prod. 215, 1233–1245 (2019).

    CAS 

    Google Scholar
     

  • 11.

    Ong, Q. K., Wei, A., Lin, X. M. Exchange bias in Fe/Fe3O4 core-shell magnetic nanoparticles mediated by frozen interfacial spins. Phys. Rev. B, 80, 134418, https://doi.org/10.1103/PhysRevB.80.134418 (2009).

  • 12.

    Zhu, J. J., Yao, D. X., Zhang, S. C., Chang, K. Electrically controllable surface magnetism on the surface of topological insulators. Phys. Rev. Lett. 106, 097201, https://doi.org/10.1103/PhysRevLett.106.097201 (2011).

  • 13.

    Klein, N. D., Hurley, K. R., Feng, Z. V. & Haynes, C. L. Dark field transmission electron microscopy as a tool for identifying inorganic nanoparticles in biological matrices. Anal. Chem. 87, 4356–4362 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 14.

    Maleki, A., Hajizadeh, Z. & Firozi-Haji, R. Eco-friendly functionalization of magnetic halloysite nanotube with SO3H for synthesis of dihydropyrimidinones. Microporous Mesoporous Mater. 259, 46–53 (2018).

    CAS 

    Google Scholar
     

  • 15.

    Maleki, A., Hajizadeh, Z. & Salehi, P. Mesoporous halloysite nanotubes modified by CuFe2O4 spinel ferrite nanoparticles and study of its application as a novel and efficient heterogeneous catalyst in the synthesis of pyrazolopyridine derivatives. Sci. Rep. 9, 5552 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Taheri-Ledari, R. et al. High-performance sono/nano-catalytic system: Fe3O4@Pd/CaCO3-DTT core/shell nanostructures, a suitable alternative for traditional reducing agents for antibodies. Ultrason. Sonochem. 61, 104824 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 17.

    Dastjerdi, R. & Montazer, M. A review on the application of inorganic nano-structured materials in the modification of textiles: Focus on anti-microbial properties. Colloids Surf. B 79, 5–18 (2010).

    CAS 

    Google Scholar
     

  • 18.

    Das, S. K. et al. Understanding the biosynthesis and catalytic activity of Pd, Pt, and Ag nanoparticles in hydrogenation and Suzuki coupling reactions at the nano–bio interface. J. Phys. Chem. C 118, 24623–24632 (2014).

    CAS 

    Google Scholar
     

  • 19.

    Yao, Y. et al. Fe Co, Ni nanocrystals encapsulated in nitrogen-doped carbon nanotubes as Fenton-like catalysts for organic pollutant removal. J. Hazard. Mater. 314, 129–139 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Sharma, G., Kumar, A., Sharma, S., Naushad, M., Dwivedi, R. P., Alothman, Z. A., Mola, G. T. Novel development of nanoparticles to bimetallic nanoparticles and their composites: A review. J. King Saud Univ. 31, 257–269 (2017).

  • 21.

    Matsuo, T., Ueki, M., Takeyama, M. & Tanaka, R. Strengthening of nickel-base superalloys for nuclear heat exchanger application. J. Mater. Sci. 22, 1901–1907 (1987).

    ADS 
    CAS 

    Google Scholar
     

  • 22.

    Ram, S. & Frankwicz, P. S. Granular GMR sensors of Co–Cu and Co–Ag nanoparticles synthesized through a chemical route using NaBH4. Phys. Status Solidi A 188, 1129–1140 (2001).

    ADS 
    CAS 

    Google Scholar
     

  • 23.

    Roy, A., Srinivas, V., Ram, S., De Toro, J. A. & Riveiro, J. M. Effect of interstitial oxygen on the crystal structure and magnetic properties of Ni nanoparticles. J. Appl. Phys. 96, 6782–6788 (2004).

    ADS 
    CAS 

    Google Scholar
     

  • 24.

    Conte, M., Prosini, P. P. & Passerini, S. Overview of energy/hydrogen storage: state-of-the-art of the technologies and prospects for nanomaterials. Mater. Sci. Eng., B 108, 2–8 (2004).


    Google Scholar
     

  • 25.

    Chen, J. et al. Optical properties of Pd−Ag and Pt−Ag nanoboxes synthesized via galvanic replacement reactions. Nano Lett. 5, 2058–2062 (2005).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Roy, A., Srinivas, V., Ram, S., De Toro, J. A. & Mizutani, U. Structure and magnetic properties of oxygen-stabilized tetragonal Ni nanoparticles prepared by borohydride reduction method. Phys. Rev. B 71, 184443 (2005).

    ADS 

    Google Scholar
     

  • 27.

    Roy, A., Srinivas, V., Ram, S., De Toro, J. A. & Goff, J. P. A comprehensive structural and magnetic study of Ni nanoparticles prepared by the borohydride reduction of NiCl2 solution of different concentrations. J. Appl. Phys. 100, 094307 (2006).

    ADS 

    Google Scholar
     

  • 28.

    Hu, F., Li, Z., Tu, C. & Gao, M. Preparation of magnetite nanocrystals with surface reactive moieties by one-pot reaction. J. Colloid Interface Sci. 311, 469–474 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 29.

    Kallempudi, S. S. & Gurbuz, Y. A nanostructured-nickel based interdigitated capacitive transducer for biosensor applications. Sensors Actuators B Chem. 160, 891–898 (2011).

    CAS 

    Google Scholar
     

  • 30.

    Sun, J., Su, Y., Rao, S. & Yang, Y. Separation of lysozyme using superparamagnetic carboxymethyl chitosan nanoparticles. J. Chromatogr. B 879, 2194–2200 (2011).

    CAS 

    Google Scholar
     

  • 31.

    Malvindi, M. A. et al. SiO2 nanoparticles biocompatibility and their potential for gene delivery and silencing. Nanoscale 4, 486–495 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Vaseem, M., Tripathy, N., Khang, G. & Hahn, Y. B. Green chemistry of glucose-capped ferromagnetic hcp-nickel nanoparticles and their reduced toxicity. RSC Adv. 3, 9698–9704 (2013).

    CAS 

    Google Scholar
     

  • 33.

    Singh, V., Ram, S. & Srinivas, V. Ferromagnetic nickel filled in borate shell by controlled oxidation–crystallization of boride in air. J. Alloy. Compd. 610, 100–106 (2014).

    CAS 

    Google Scholar
     

  • 34.

    Simonin, M. Richaume, a impact of engineered nanoparticles on the activity, abundance, and diversity of soil microbial communities: A review. Environ. Sci. Pollut. Res. 22, 13710–13723 (2015).

    CAS 

    Google Scholar
     

  • 35.

    Nagajyothi, P. C. et al. Antioxidant and anti-inflammatory activities of zinc oxide nanoparticles synthesized using Polygala tenuifolia root extract. J. Photochem. Photobiol. B 146, 10–17 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Gong, M., Wang, D. Y., Chen, C. C., Hwang, B. J. & Dai, H. A mini review on nickel-based electrocatalysts for alkaline hydrogen evolution reaction. Nano Res. 9, 28–46 (2016).

    CAS 

    Google Scholar
     

  • 37.

    Bibi, I. et al. Nickel nanoparticle synthesis using Camellia sinensis as reducing and capping agent: Growth mechanism and photo-catalytic activity evaluation. Int. J. Biol. Macromol. 103, 783–790 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    Seo, S., Perez, G. A., Tewari, K., Comas, X. & Kim, M. Catalytic activity of nickel nanoparticles stabilized by adsorbing polymers for enhanced carbon sequestration. Sci. Rep. 8, 11786 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Jouyandeh, M. et al. Surface engineering of nanoparticles with macromolecules for epoxy curing: Development of super-reactive nitrogen-rich nanosilica through surface chemistry manipulation. Appl. Surf. Sci. 447, 152–164 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 40.

    Panáček, A. et al. Bacterial resistance to silver nanoparticles and how to overcome it. Nat. Nanotechnol. 13, 65–71 (2018).

    ADS 
    PubMed 

    Google Scholar
     

  • 41.

    Li, D. & Komarneni, S. Microwave-assisted polyol process for synthesis of Ni nanoparticles. J. Am. Ceram. Soc. 89, 1510–1517 (2006).

    CAS 

    Google Scholar
     

  • 42.

    Roselina, N. N., Azizan, A., Hyie, K. M., Jumahat, A. & Bakar, M. A. Effect of pH on formation of nickel nanostructures through chemical reduction method. Proc. Eng. 68, 43–48 (2013).

    CAS 

    Google Scholar
     

  • 43.

    Muntean, A., Wagner, M., Meyer, J., Seipenbusch, M. Generation of copper, nickel, and CuNi alloy nanoparticles by spark discharge. J. Nanoparticle Res. 18, 229; https://doi.org/10.1007/s11051-016-3547-2 (2016).

  • 44.

    El-Khatib, A. M., Badawi, M. S., Roston, G. D., Moussa, R. M. & Mohamed, M. M. Structural and magnetic properties of nickel nanoparticles prepared by arc discharge method using an ultrasonic nebulizer. J. Cluster Sci. 29, 1321–1327 (2018).

    CAS 

    Google Scholar
     

  • 45.

    Hadsund, P. The tin-mercury mirror: Its manufacturing technique and deterioration processes. Stud. Conserv. 38, 3–16 (1993).


    Google Scholar
     

  • 46.

    Gingras, J., Déry, J. P., Yockell-Lelièvre, H., Borra, E. & Ritcey, A. M. Surface films of silver nanoparticles for new liquid mirrors. Colloids Surf. A 279, 79–86 (2006).

    CAS 

    Google Scholar
     

  • 47.

    Mubeen, S. et al. Plasmonic properties of gold nanoparticles separated from a gold mirror by an ultrathin oxide. Nano Lett. 12, 2088–2094 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 48.

    Roux, P., de Rosny, J., Tanter, M. & Fink, M. The Aharonov-Bohm effect revisited by an acoustic time-reversal mirror. Phys. Rev. Lett. 79, 3170. https://doi.org/10.1103/PhysRevLett.79.3170 (1997).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 49.

    Yu, D. & Yam, V. W. W. Hydrothermal-induced assembly of colloidal silver spheres into various nanoparticles on the basis of HTAB-modified silver mirror reaction. J. Phys. Chem. B 109, 5497–5503 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 50.

    Shen, L., Ji, J. & Shen, J. Silver mirror reaction as an approach to construct superhydrophobic surfaces with high reflectivity. Langmuir 24, 9962–9965 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 51.

    Moulin, E. et al. Thin-film silicon solar cells with integrated silver nanoparticles. Thin Solid Films 516, 6813–6817 (2008).

    ADS 
    CAS 

    Google Scholar
     

  • 52.

    Inbaraj, B. S., Wang, J. S., Lu, J. F., Siao, F. Y. & Chen, B. H. Adsorption of toxic mercury (II) by an extracellular biopolymer poly(γ-glutamic acid). Biores. Technol. 100, 200–207 (2009).

    CAS 

    Google Scholar
     

  • 53.

    Gupta, I., Duran, N., Rai, M. Nano-silver toxicity: Emerging concerns and consequences in human health. In Nano-Antimicrobials Progress and Prospects (ed. Ciof, N., Rai, M.) 525–542 (Springer, New York, 2011).

  • 54.

    Xu, X., He, W., Wang, C., Wei, M. & Li, B. SiNx thickness dependence of spectral properties and durability of protected-silver mirrors. Surf. Coat. Technol. 324, 175–181 (2017).

    CAS 

    Google Scholar
     

  • 55.

    Ritcey, A. M. & Borra, E. Magnetically deformable liquid mirrors from surface films of silver nanoparticles. ChemPhysChem 11, 981–986 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 56.

    Sun, X., Dou, J., Xie, F., Li, Y. & Wei, M. One-step preparation of mirror-like NiS nanosheets on ITO for the efficient counter electrode of dye-sensitized solar cells. Chem. Commun. 50, 9869–9871 (2014).

    CAS 

    Google Scholar
     

  • 57.

    Rai, M., Yadav, A. & Gade, A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 27, 76–83 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 58.

    Lin, J. J., Lin, W. C., Li, S. D., Lin, C. Y. & Hsu, S. H. Evaluation of the antibacterial activity and biocompatibility for silver nanoparticles immobilized on nano silicate platelets. ACS Appl. Mater. Interfaces. 5, 433–443 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 59.

    Le Ouay, B. & Stellacci, F. Antibacterial activity of silver nanoparticles: A surface science insight. Nano Today 10, 339–354 (2015).


    Google Scholar
     

  • 60.

    Huo, P. et al. Fabricated Ag/Ag2S/reduced graphene oxide composite photocatalysts for enhancing visible light photocatalytic and antibacterial activity. J. Ind. Eng. Chem. 57, 125–133 (2018).

    CAS 

    Google Scholar
     

  • 61.

    Dadi, R., Azouani, R., Traore, M., Mielcarek, C., Kanaev, A. Antibacterial activity of ZnO and CuO nanoparticles against gram positive and gram negative strains. Mater. Sci. Eng. C 104, 109968, https://doi.org/10.1016/j.msec.2019.109968 (2019).

  • 62.

    El Ghandoor, H., Zidan, H. M., Khalil, M. M. & Ismail, M. I. M. Synthesis and some physical properties of magnetite (Fe3O4) nanoparticles. Int. J. Electrochem. Sci. 7, 5734–5745 (2012).


    Google Scholar
     

  • 63.

    Obaidat, I. M. et al. Investigating exchange bias and coercivity in Fe3O4–γ-Fe2O3 core–shell nanoparticles of fixed core diameter and variable shell thicknesses. Nanomaterials 7, 415 (2017).

    PubMed Central 

    Google Scholar
     

  • 64.

    Chaudhary, J., Tailor, G., Yadav, B. L. & Michael, O. Synthesis and biological function of nickel and copper nanoparticles. Heliyon 5, 2405–8440 (2019).


    Google Scholar
     

  • 65.

    Park, S. B. et al. Silver-coated magnetic nanocomposites induced growth inhibition and protein changes in foodborne bacteria. Sci. Rep. 9, 1–11 (2019).


    Google Scholar
     

  • 66.

    Stanić, V. et al. Synthesis, characterization and antimicrobial activity of copper and zinc-doped hydroxyapatite nanopowders. Appl. Surf. Sci. 256, 6083–6089 (2010).

    ADS 

    Google Scholar
     

  • 67.

    Raghupathi, K. R., Koodali, R. T. & Manna, A. C. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27, 4020–4028 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 68.

    Samanovic, M. I., Ding, C., Thiele, D. J. & Darwin, K. H. Copper in microbial pathogenesis: Meddling with the metal. Cell Host Microbe 11, 106–115 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 69.

    Salem, W. et al. Antibacterial activity of silver and zinc nanoparticles against vibrio cholerae and enterotoxic Escherichia coli. Int. J. Med. Microbiol. 305, 85–95 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 70.

    Buser, R. A., De Rooij, N. F., Tischhauser, H., Dommann, A. & Staufert, G. Biaxial scanning mirror activated by bimorph structures for medical applications. Sens. Actuators A 31, 29–34 (1992).


    Google Scholar
     

  • 71.

    Vassiliev, V., Fegan, S. & Brousseau, P. Wide field aplanatic two-mirror telescopes for ground-based γ-ray astronomy. Astropart. Phys. 28, 10–27 (2007).

    ADS 

    Google Scholar
     

  • 72.

    Argueta-Figueroa, L., Morales-Luckie, R. A., Scougall-Vilchis, R. J. & Olea-Mejía, O. F. Synthesis, characterization and antibacterial activity of copper, nickel and bimetallic Cu–Ni nanoparticles for potential use in dental materials. Prog. Nat. Sci. 24, 321–328 (2014).

    CAS 

    Google Scholar
     

  • 73.

    Gahlawat, G. & Choudhury, A. R. A review on the biosynthesis of metal and metal salt nanoparticles by microbes. RSC Adv. 9, 12944–12967 (2019).

    CAS 

    Google Scholar
     

  • 74.

    Huang, Q. et al. Highly smooth, stable and reflective Ag-paper electrode enabled by silver mirror reaction for organic optoelectronics. Chem. Eng. J. 370, 1048–1056 (2019).

    CAS 

    Google Scholar
     

  • 75.

    Zhou, Y. H. & Zheng, X. A general expression of magnetic force for soft ferromagnetic plates in complex magnetic fields. Int. J. Eng. Sci. 35, 1405–1417 (1997).

    MathSciNet 
    MATH 

    Google Scholar
     

  • 76.

    Barakat, N. A. et al. CoNi bimetallic nanofibers by electrospinning: Nickel-based soft magnetic material with improved magnetic properties. J. Phys. Chem. C 114, 15589–15593 (2010).

    CAS 

    Google Scholar
     

  • 77.

    Rausch, P., Verpoort, S. & Wittrock, U. Unimorph deformable mirror for space telescopes: Environmental testing. Opt. Express 24, 1528–1542 (2016).

    ADS 
    PubMed 

    Google Scholar
     

  • 78.

    Saghatforoush, L. A., Mehdizadeh, R. & Chalabian, F. Hydrothermal and sonochemical synthesis of a nano-sized nickel (II) Schiff base complex as a precursor for nano-sized nickel (II) oxide; Spectroscopic, catalytic and antibacterial properties. Transit. Met. Chem. 35, 903–910 (2010).

    CAS 

    Google Scholar
     

  • 79.

    Pang, H., Lu, Q., Chen, C., Liu, X. & Gao, F. Facile synthesis of Ni3(BO3)2 nanoribbons and their antimicrobial, electrochemical and electrical properties. J. Mater. Chem. 21, 13889–13894 (2011).

    CAS 

    Google Scholar
     

  • 80.

    Haldorai, Y. & Shim, J. J. Chitosan-zinc oxide hybrid composite for enhanced dye degradation and antibacterial activity. Compos. Interfaces 20, 365–377 (2013).

    CAS 

    Google Scholar
     

  • 81.

    Das, D., Nath, B. C., Phukon, P. & Dolui, S. K. Synthesis and evaluation of antioxidant and antibacterial behavior of CuO nanoparticles. Colloids Surf. B 101, 430–433 (2013).

    CAS 

    Google Scholar
     

  • 82.

    Shamaila, S. et al. Antibacterial effects of laser ablated Ni nanoparticles. Appl. Phys. Lett. 103, 153701 (2013).

    ADS 

    Google Scholar
     

  • 83.

    Chaudhary, R. G., Tanna, J. A., Gandhare, N. V., Rai, A. R. & Juneja, H. D. Synthesis of nickel nanoparticles: microscopic investigation, an efficient catalyst and effective antibacterial activity. Adv. Mater. Lett. 6, 990–998 (2015).

    CAS 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *