CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Giosan, L., Syvitski, J., Constantinescu, S. & Day, J. Climate change: protect the world’s deltas. Nature 516, 31–33 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 2.

    Yang, Z. et al. Dam impacts on the Changjiang (Yangtze) river sediment discharge to the sea: the past 55 years and after the Three Gorges Dam. Water Resour. Res. https://doi.org/10.1029/2005WR003970 (2006).

    Article 

    Google Scholar
     

  • 3.

    Saito, Y., Chaimanee, N., Jarupongsakul, T. & Syvitski, J. P. Shrinking megadeltas in Asia: sea-level rise and sediment reduction impacts from case study of the Chao Phraya Delta. Inprint Newsl. IGBP/IHDP Land Ocean Interact. Coast. Zone 2, 2007 (2007).


    Google Scholar
     

  • 4.

    Wang, H. et al. Impacts of the dam-orientated water-sediment regulation scheme on the lower reaches and delta of the Yellow River (Huanghe): a review. Glob. Planet. Change 157, 93–113 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 5.

    Caputo, M., Pieri, L. & Unguendoli, M. Geometric investigation of the subsidence in the Po Delta. Boll. Geofis. Teor. Appl. 14, 187–207 (1970).


    Google Scholar
     

  • 6.

    Syvitski, J. P. M. et al. Sinking deltas due to human activities. Nat. Geosci. 2, 681–686. https://doi.org/10.1038/ngeo629 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 7.

    Wang, H. et al. Insar reveals coastal subsidence in the Pearl River delta, China. Geophys. J. Int. 191, 1119–1128 (2012).

    ADS 
    Article 

    Google Scholar
     

  • 8.

    Higgins, S., Overeem, I., Tanaka, A. & Syvitski, J. P. M. Land subsidence at aquaculture facilities in the Yellow River Delta, China. Geophys. Res. Lett. 40, 3898–3902 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 9.

    Xiqing, C., Qiaoju, Z. & Erfeng, Z. In-channel sand extraction from the mid-lower Yangtze channels and its management: problems and challenges. J. Environ. Plan. Manag. 49, 309–320 (2006).

    Article 

    Google Scholar
     

  • 10.

    Lu, X. X., Zhang, S. R., Xie, S. P. & Ma, P. K. Rapid channel incision of the lower Pearl River (China) since the 1990s as a consequence of sediment depletion. Hydrol. Earth Syst. Sci. 11, 1897–1906 (2007).

    ADS 
    Article 

    Google Scholar
     

  • 11.

    Brunier, G., Anthony, E. J., Goichot, M., Provansal, M. & Dussouillez, P. Recent morphological changes in the Mekong and Bassac River channels, Mekong delta: the marked impact of river-bed mining and implications for delta destabilisation. Geomorphology 224, 177–191. https://doi.org/10.1016/j.geomorph.2014.07.009 (2014).

    ADS 
    Article 

    Google Scholar
     

  • 12.

    Jordan, C. et al. Sand mining in the Mekong delta revisited: current scales of local sediment deficits. Sci. Rep. 9, 17823–17823 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 13.

    Coleman, J. M. Brahmaputra river: channel processes and sedimentation. Sediment. Geol. 3, 129–239 (1969).

    ADS 
    Article 

    Google Scholar
     

  • 14.

    Rafiuddin, M., Uyeda, H. & Islam, M. N. Characteristics of monsoon precipitation systems in and around Bangladesh. Int. J. Climatol. A J. R. Meteorol. Soc. 30, 1042–1055 (2010).


    Google Scholar
     

  • 15.

    Galloway, W. E. Process Framework for Describing the Morphologic and Stratigraphic Evolution of Deltaic Depositional Systems (Houston Geological Society, Houston, 1975).


    Google Scholar
     

  • 16.

    Wilson, C. et al. Widespread infilling of tidal channels and navigable waterways in the human-modified tidal deltaplain of southwest Bangladesh. Elem. Sci. Anthrop. 5, 78–89 (2017).

    Article 

    Google Scholar
     

  • 17.

    Alam, M. Subsidence of the Ganges–Brahmaputra delta of Bangladesh and associated drainage, sedimentation and salinity problems. In Sea-Level Rise and Coastal Subsidence 169–192 (Springer, 1996).

  • 18.

    Ali, A. M. S. Rice to shrimp: land use/land cover changes and soil degradation in southwestern Bangladesh. Land Use Policy 23, 421–435 (2006).

    Article 

    Google Scholar
     

  • 19.

    Mohal, N., Khan, Z. H. & Rahman, N. Impact of sea level rise on coastal rivers of bangladesh. Dhaka: Institute of Water Modelling (IWM). Assessment conducted for WARPO, an organization under Ministry of Water Resources (2006).

  • 20.

    Mahmuduzzaman, M. et al. Causes of salinity intrusion in coastal belt of Bangladesh. Int. J. Plant Res. 4, 8–13 (2014).


    Google Scholar
     

  • 21.

    Ayers, J. C. et al. Salinization and arsenic contamination of surface water in southwest Bangladesh. Geochem. Trans. 18, 4 (2017).

    Article 

    Google Scholar
     

  • 22.

    Higgins, S. A. et al. Insar measurements of compaction and subsidence in the Ganges–Brahmaputra delta, Bangladesh. J. Geophys. Res. Earth Surf. 119, 1768–1781 (2014).

    ADS 
    Article 

    Google Scholar
     

  • 23.

    Auerbach, L. et al. Flood risk of natural and embanked landscapes on the Ganges–Brahmaputra tidal delta plain. Nat. Clim. Change 5, 153–157 (2015).

    ADS 
    Article 

    Google Scholar
     

  • 24.

    Becker, M. et al. Water level changes, subsidence, and sea level rise in the Ganges–Brahmaputra–Meghna delta. Proc. Natl. Acad. Sci. 117, 1867–1876 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 25.

    Sinha, M., Mukhopadhyay, M., Mitra, P., Bagchi, M. & Karamkar, H. Impact of farakka barrage on the hydrology and fishery of Hoogly estuary. Estuaries 19, 710–722 (1996).

    Article 

    Google Scholar
     

  • 26.

    de Groot, J. K. & van Groen, P. The Gorai re-excavation project. Terra et Aqua 85, 21–25 (2001).


    Google Scholar
     

  • 27.

    Rahman, A. & Yunus, A. Hydrodynamic and morphological response to dredging: analysis on Gorai river of Bangladesh. Int. J. Innov. Res. Sci. Engi. Technol. 5, 15610–15618 (2016).


    Google Scholar
     

  • 28.

    Joshi, N. M. National river linking project of India. Hydro Nepal J. Water Energy Environ. 12, 13–19 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 29.

    Bagla, P. India plans the grandest of canal networks. Science 345, 128 (2014).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 30.

    Higgins, S., Overeem, I., Rogers, K. & Kalina, E. River linking in India: downstream impacts on water discharge and suspended sediment transport to deltas. Elem. Sci. Anthrop. 6, 20 (2018).

    Article 

    Google Scholar
     

  • 31.

    Isikdogan, F., Bovik, A. & Passalacqua, P. Automatic channel network extraction from remotely sensed images by singularity analysis. IEEE Geosci. Remote Sens. Lett. 12, 2218–2221 (2015).

    ADS 
    Article 

    Google Scholar
     

  • 32.

    Isikdogan, F., Bovik, A. & Passalacqua, P. RivaMap: an automated river analysis and mapping engine. Remote Sens. Environ. 202, 88–97 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 33.

    Isikdogan, F., Bovik, A. C. & Passalacqua, P. Surface water mapping by deep learning. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 10, 4909–4918 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 34.

    Isikdogan, F., Bovik, A. & Passalacqua, P. Seeing through the clouds with deepwatermap. IEEE Geosci. Remote Sens. Lett. 99, 1–5 (2019).

    Article 

    Google Scholar
     

  • 35.

    Jarriel, T., Isikdogan, L. F., Bovik, A. & Passalacqua, P. Characterization of deltaic channel morphodynamics from imagery time series using the channelized response variance. J. Geophys. Res. Earth Surf. 124, 3022–3042 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 36.

    Alam, M., Hasan, A., Khan, M. & Whitney, J. Geological map of Bangladesh. Technical Report (Geological Survey of Dhaka, Bangladesh, 1990).

  • 37.

    (US), G. S. & Persits, F. Digital Geologic and Geophysical Data of Bangladesh (US Geological Survey, 2001).

  • 38.

    Xu, H. Modification of normalized difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 27, 3025–3033 (2006).

    ADS 
    Article 

    Google Scholar
     

  • 39.

    Rossi, V. M. et al. Impact of tidal currents on delta-channel deepening, stratigraphic architecture, and sediment bypass beyond the shoreline. Geology 44, 927–930 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 40.

    Hoitink, A., Wang, Z., Vermeulen, B., Huismans, Y. & Kästner, K. Tidal controls on river delta morphology. Nat. Geosci. 10, 637–645 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 41.

    Lentsch, N., Finotello, A. & Paola, C. Reduction of deltaic channel mobility by tidal action under rising relative sea level. Geology 46, 599–602 (2018).

    ADS 
    Article 

    Google Scholar
     

  • 42.

    Wilson, C. A. & Goodbred, S. L. Construction and maintenance of the Ganges–Brahmaputra–Meghna delta: linking process, morphology, and stratigraphy. Annu. Rev. Mar. Sci. 7, 67–88. https://doi.org/10.1146/annurev-marine-010213-135032 (2015).

    ADS 
    Article 

    Google Scholar
     

  • 43.

    Salehin, M. et al. Mechanisms and drivers of soil salinity in coastal Bangladesh. In Ecosystem Services for Well-Being in Deltas 333–347 (Palgrave Macmillan, Cham, 2018).

  • 44.

    Naus, F. L., Schot, P.-R., Ahmed, K. M. & Griffioen, J.-R. Influence of landscape features on the large variation of shallow groundwater salinity in southwestern Bangladesh. J. Hydrol. X 5, 100043 (2019).

    Article 

    Google Scholar
     

  • 45.

    Dasgupta, S., Akhter Kamal, F., Huque Khan, Z., Choudhury, S. & Nishat, A. River salinity and climate change: evidence from coastal Bangladesh. In World Scientific Reference on Asia and the World Economy 205–242 (World Scientific, 2015).

  • 46.

    Winterwerp, J. & Giardino, A. Assessment of increasing freshwater input on salinity and sedimentation in the Gorai river system. World Bank Project 1206292-000 (2012).

  • 47.

    Pethick, J. & Orford, J. D. Rapid rise in effective sea-level in southwest Bangladesh: its causes and contemporary rates. Glob. Planet. Change 111, 237–245 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 48.

    Bain, R., Hale, R. P. & Goodbred, S. Flow reorganization in an anthropogenically modified tidal channel network: an example from the southwestern Ganges–Brahmaputra–Meghna delta. J. Geophys. Res. Earth Surf. 124, 2141–2159 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 49.

    Bomer, E., Wilson, C., Hale, R., Hossain, A. & Rahman, F. Surface elevation and sedimentation dynamics in the Ganges–Brahmaputra Tidal Delta Plain, Bangladesh: evidence for mangrove adaptation to human-induced tidal amplification. Catena 187, 104312. https://doi.org/10.1016/j.catena.2019.104312 (2019).

    Article 

    Google Scholar
     

  • 50.

    Fagherazzi, S. Self-organization of tidal deltas. Proc. Natl. Acad. Sci. 105, 18692–18695 (2008).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 51.

    Hale, R., Bain, R., Goodbred, S. & Best, J. Observations and scaling of tidal mass transport across the lower Ganges–Brahmaputra delta plain: implications for delta management and sustainability. Earth Surf. Dyn. 7, 231–245. https://doi.org/10.5194/esurf-7-231-2019 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 52.

    Muralidhar, G. S., Bovik, A. C. & Markey, M. K. A steerable, multiscale singularity index. IEEE Signal Process. Lett. 20, 7–10. https://doi.org/10.1109/LSP.2012.2226027 (2013).

    ADS 
    Article 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *