CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING

[ad_1]

  • 1.

    Oppenheimer, M. et al. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H.-O. et al.) Ch.4 (in the press).

  • 2.

    Moore, J., Jevrejeva, S. & Grinsted, A. The historical global sea-level budget. Ann. Glaciol. 52, 8–14 (2011).

    ADS 

    Google Scholar
     

  • 3.

    Gregory, J. M. et al. Twentieth-century global-mean sea level rise: is the whole greater than the sum of the parts? J. Clim. 26, 4476–4499 (2013).

    ADS 

    Google Scholar
     

  • 4.

    Hay, C. C., Morrow, E., Kopp, R. E. & Mitrovica, J. X. Probabilistic reanalysis of twentieth-century sea-level rise. Nature 517, 481–484 (2015); erratum 552, 278 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Dangendorf, S. et al. Persistent acceleration in global sea-level rise since the 1960s. Nat. Clim. Change 9, 705–710 (2019).

  • 6.

    Chambers, D. P., Merrifield, M. A. & Nerem, R. S. Is there a 60-year oscillation in global mean sea level? Geophys. Res. Lett. 39, L18607 (2012).

    ADS 

    Google Scholar
     

  • 7.

    Munk, W. Twentieth century sea level: an enigma. Proc. Natl Acad. Sci. USA 99, 6550–6555 (2002).

    ADS 
    CAS 

    Google Scholar
     

  • 8.

    Church, J. A. et al. Revisiting the Earth’s sea-level and energy budgets from 1961 to 2008. Geophys. Res. Lett. 38, L18601 (2011); erratum 40, 4066 (2013).

    ADS 

    Google Scholar
     

  • 9.

    Frederikse, T., Jevrejeva, S., Riva, R. E. M. & Dangendorf, S. A consistent sea-level reconstruction and its budget on basin and global scales over 1958–2014. J. Clim. 31, 1267–1280 (2018).

    ADS 

    Google Scholar
     

  • 10.

    WCRP Global Sea Level Budget Group. Global sea-level budget 1993–present. Earth Syst. Sci. Data 10, 1551–1590 (2018).

    ADS 

    Google Scholar
     

  • 11.

    Cabanes, C. Sea level rise during past 40 years determined from satellite and in situ observations. Science 294, 840–842 (2001).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Miller, L. & Douglas, B. C. Mass and volume contributions to twentieth-century global sea level rise. Nature 428, 406–409 (2004).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Jevrejeva, S., Matthews, A. & Slangen, A. The twentieth-century sea level budget: recent progress and challenges. Surv. Geophys. 38, 295–307 (2017).

    ADS 

    Google Scholar
     

  • 14.

    Kjeldsen, K. K. et al. Spatial and temporal distribution of mass loss from the Greenland Ice Sheet since ad 1900. Nature 528, 396–400 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Zanna, L., Khatiwala, S., Gregory, J. M., Ison, J. & Heimbach, P. Global reconstruction of historical ocean heat storage and transport. Proc. Natl Acad. Sci. USA 116, 1126–1131 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Parkes, D. & Marzeion, B. Twentieth-century contribution to sea-level rise from uncharted glaciers. Nature 563, 551–554 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Humphrey, V. & Gudmundsson, L. GRACE-REC: a reconstruction of climate-driven water storage changes over the last century. Earth Syst. Sci. Data 11, 1153–1170 (2019).

    ADS 

    Google Scholar
     

  • 18.

    Marzeion, B., Leclercq, P. W., Cogley, J. G. & Jarosch, A. H. Brief Communication: Global reconstructions of glacier mass change during the 20th century are consistent. Cryosphere 9, 2399–2404 (2015).

    ADS 

    Google Scholar
     

  • 19.

    Cheng, L., Abraham, J., Hausfather, Z. & Trenberth, K. E. How fast are the oceans warming? Science 363, 128–129 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Dangendorf, S. et al. Reassessment of 20th century global mean sea level rise. Proc. Natl Acad. Sci. USA 114, 5946–5951 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Zemp, M. et al. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016. Nature 568, 382–386 (2019); erratum 577, E9 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Adhikari, S. et al. What drives 20th century polar motion? Earth Planet. Sci. Lett. 502, 126–132 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 23.

    The IMBIE team. Mass balance of the Antarctic Ice Sheet from 1992 to 2017. Nature 558, 219–222 (2018).

    ADS 

    Google Scholar
     

  • 24.

    Bamber, J. L., Westaway, R. M., Marzeion, B. & Wouters, B. The land ice contribution to sea level during the satellite era. Environ. Res. Lett. 13, 063008 (2018); corrigendum 13, 099502 (2018).

    ADS 

    Google Scholar
     

  • 25.

    Mouginot, J. et al. Forty-six years of Greenland Ice Sheet mass balance from 1972 to 2018. Proc. Natl Acad. Sci. USA 116, 9239–9244 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Chao, B. F., Wu, Y. H. & Li, Y. S. Impact of artificial reservoir water impoundment on global sea level. Science 320, 212–214 (2008).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Döll, P., Müller Schmied, H., Schuh, C., Portmann, F. T. & Eicker, A. Global-scale assessment of groundwater depletion and related groundwater abstractions: combining hydrological modeling with information from well observations and GRACE satellites. Wat. Resour. Res. 50, 5698–5720 (2014).

    ADS 

    Google Scholar
     

  • 28.

    Wada, Y. et al. Fate of water pumped from underground and contributions to sea-level rise. Nat. Clim. Change 6, 777–780 (2016).

    ADS 

    Google Scholar
     

  • 29.

    Watkins, M. M., Wiese, D. N., Yuan, D.-N., Boening, C. & Landerer, F. W. Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons. J. Geophys. Res. Solid Earth 120, 2648–2671 (2015).

    ADS 

    Google Scholar
     

  • 30.

    Levitus, S. et al. World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys. Res. Lett. 39, L10603 (2012).

    ADS 

    Google Scholar
     

  • 31.

    Ishii, M. et al. Accuracy of global upper ocean heat content estimation expected from present observational data sets. Sci. Online Lett. Atmos. 13, 163–167 (2017).


    Google Scholar
     

  • 32.

    Cheng, L. & Zhu, J. Benefits of CMIP5 multimodel ensemble in reconstructing historical ocean subsurface temperature variations. J. Clim. 29, 5393–5416 (2016).

    ADS 

    Google Scholar
     

  • 33.

    Thompson, P. R., Hamlington, B. D., Landerer, F. W. & Adhikari, S. Are long tide gauge records in the wrong place to measure global mean sea level rise? Geophys. Res. Lett. 43, 10403–10411 (2016).

    ADS 

    Google Scholar
     

  • 34.

    Beckley, B. D., Callahan, P. S., Hancock, D. W., Mitchum, G. T. & Ray, R. D. On the “cal-mode” correction to TOPEX satellite altimetry and its effect on the global mean sea level time series. J. Geophys. Res. Oceans 122, 8371–8384 (2017).

    ADS 

    Google Scholar
     

  • 35.

    Gregory, J. M. et al. Concepts and terminology for sea level: mean, variability and change, both local and global. Surv. Geophys. 40, 1251–1289 (2019).

    ADS 

    Google Scholar
     

  • 36.

    Durack, P. J., Wijffels, S. E. & Gleckler, P. J. Long-term sea-level change revisited: the role of salinity. Environ. Res. Lett. 9, 114017 (2014).

    ADS 

    Google Scholar
     

  • 37.

    Mengel, M. et al. Future sea level rise constrained by observations and long-term commitment. Proc. Natl Acad. Sci. USA 113, 2597–2602 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Thompson, P. R. & Merrifield, M. A. A unique asymmetry in the pattern of recent sea level change. Geophys. Res. Lett. 41, 7675–7683 (2014).

    ADS 

    Google Scholar
     

  • 39.

    Tamisiea, M. E. Ongoing glacial isostatic contributions to observations of sea level change. Geophys. J. Int. 186, 1036–1044 (2011).

    ADS 

    Google Scholar
     

  • 40.

    Melini, D. & Spada, G. Some remarks on glacial isostatic adjustment modelling uncertainties. Geophys. J. Int. 218, 401–413 (2019).

    ADS 

    Google Scholar
     

  • 41.

    Caron, L. et al. GIA model statistics for GRACE hydrology, cryosphere, and ocean science. Geophys. Res. Lett. 45, 2203–2212 (2018).

    ADS 

    Google Scholar
     

  • 42.

    Peltier, W. R., Argus, D. F. & Drummond, R. Comment on “An assessment of the ICE-6G_C (VM5a) glacial isostatic adjustment model” by Purcell et al. J. Geophys. Res. Solid Earth 123, 2019–2028 (2018).

    ADS 

    Google Scholar
     

  • 43.

    Wiese, D. N., Landerer, F. W. & Watkins, M. M. Quantifying and reducing leakage errors in the JPL RL05M GRACE mascon solution. Wat. Resour. Res. 52, 7490–7502 (2016).

    ADS 

    Google Scholar
     

  • 44.

    Loomis, B. D., Rachlin, K. E., Wiese, D. N., Landerer, F. W. & Luthcke, S. B. Replacing GRACE/GRACE-FO C
    30 with satellite laser ranging: impacts on Antarctic Ice Sheet mass change. Geophys. Res. Lett. 47, e2019GL085488 (2020).

    ADS 

    Google Scholar
     

  • 45.

    Frederikse, T., Landerer, F. W. & Caron, L. The imprints of contemporary mass redistribution on local sea level and vertical land motion observations. Solid Earth 10, 1971–1987 (2019).

    ADS 

    Google Scholar
     

  • 46.

    Pfeffer, W. T. et al. The Randolph Glacier Inventory: a globally complete inventory of glaciers. J. Glaciol. 60, 537–552 (2014).

    ADS 

    Google Scholar
     

  • 47.

    Marzeion, B., Jarosch, A. H. & Hofer, M. Past and future sea-level change from the surface mass balance of glaciers. Cryosphere 6, 1295–1322 (2012).

    ADS 

    Google Scholar
     

  • 48.

    Gardner, A. S. et al. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 340, 852–857 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Cook, A. J., Fox, A. J., Vaughan, D. G. & Ferrigno, J. G. Retreating glacier fronts on the Antarctic peninsula over the past half-century. Science 308, 541–544 (2005).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Smith, J. A. et al. Sub-ice-shelf sediments record history of twentieth-century retreat of Pine Island Glacier. Nature 541, 77–80 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Lehner, B. et al. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front. Ecol. Environ. 9, 494–502 (2011).


    Google Scholar
     

  • 52.

    Lettenmaier, D. P. & Milly, P. C. D. Land waters and sea level. Nat. Geosci. 2, 452–454 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • 53.

    Wada, Y. et al. Past and future contribution of global groundwater depletion to sea-level rise. Geophys. Res. Lett. 39, L09402 (2012).

    ADS 

    Google Scholar
     

  • 54.

    Wada, Y. et al. Recent changes in land water storage and its contribution to sea level variations. Surv. Geophys. 38, 131–152 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Tamisiea, M. E. et al. Impact of self-attraction and loading on the annual cycle in sea level. J. Geophys. Res. 115, C07004 (2010).

    ADS 

    Google Scholar
     

  • 56.

    Adhikari, S., Ivins, E. R., Frederikse, T., Landerer, F. W. & Caron, L. Sea-level fingerprints emergent from GRACE mission data. Earth Syst. Sci. Data 11, 629–646 (2019).

    ADS 

    Google Scholar
     

  • 57.

    Schaeffer, N. Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations. Geochem. Geophys. Geosyst. 14, 751–758 (2013).

    ADS 

    Google Scholar
     

  • 58.

    Milne, G. A. & Mitrovica, J. X. Postglacial sea-level change on a rotating Earth. Geophys. J. Int. 133, 1–19 (1998).

    ADS 

    Google Scholar
     

  • 59.

    Wang, H. et al. Load Love numbers and Green’s functions for elastic Earth models PREM, iasp91, ak135, and modified models with refined crustal structure from Crust 2.0. Comput. Geosci. 49, 190–199 (2012).

    ADS 

    Google Scholar
     

  • 60.

    Dziewonski, A. M. & Anderson, D. L. Preliminary reference Earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981).

    ADS 

    Google Scholar
     

  • 61.

    McDougall, T. J. & Barker, P. M. Getting Started with TEOS-10 and the Gibbs Seawater (GSW) Oceanographic Toolbox (SCOR/IAPSO WG127, 2011).

  • 62.

    Cheng, L. et al. Improved estimates of ocean heat content from 1960 to 2015. Sci. Adv. 3, e1601545 (2017).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 63.

    Roemmich, D. et al. On the future of Argo: a global, full-depth, multi-disciplinary array. Front. Mar. Sci. 6, 439 (2019).


    Google Scholar
     

  • 64.

    Holgate, S. J. et al. New data systems and products at the permanent service for mean sea level. J. Coast. Res. 29, 493–504 (2013).


    Google Scholar
     

  • 65.

    Permanent Service for Mean Sea Level (PSMSL). Tide Gauge Data (retrieved 29 April 2019); http://www.psmsl.org/data/obtaining/.

  • 66.

    Hogarth, P. Preliminary analysis of acceleration of sea level rise through the twentieth century using extended tide gauge data sets (August 2014). J. Geophys. Res. Oceans 119, 7645–7659 (2014).

    ADS 

    Google Scholar
     

  • 67.

    Woodworth, P. L. A note on the nodal tide in sea level records. J. Coast. Res. 280, 316–323 (2012).


    Google Scholar
     

  • 68.

    Poli, P. et al. ERA-20C: an atmospheric reanalysis of the twentieth century. J. Clim. 29, 4083–4097 (2016).

    ADS 

    Google Scholar
     

  • 69.

    Copernicus Climate Change Service (C3S). ERA5: Fifth Generation of ECMWF Atmospheric Reanalyses of the Global Climate (2019); https://doi.org/10.24381/cds.f17050d7.

  • 70.

    Frederikse, T. & Gerkema, T. Multi-decadal variability in seasonal mean sea level along the North Sea coast. Ocean Sci. 14, 1491–1501 (2018).

    ADS 

    Google Scholar
     

  • 71.

    Wöppelmann, G. & Marcos, M. Vertical land motion as a key to understanding sea level change and variability. Rev. Geophys. 54, 64–92 (2016).

    ADS 

    Google Scholar
     

  • 72.

    Wöppelmann, G. et al. Evidence for a differential sea level rise between hemispheres over the twentieth century. Geophys. Res. Lett. 41, 1639–1643 (2014).

    ADS 

    Google Scholar
     

  • 73.

    Kleinherenbrink, M., Riva, R. & Frederikse, T. A comparison of methods to estimate vertical land motion trends from GNSS and altimetry at tide gauge stations. Ocean Sci. 14, 187–204 (2018).

    ADS 

    Google Scholar
     

  • 74.

    Blewitt, G., Hammond, W. & Kreemer, C. Harnessing the GPS data explosion for interdisciplinary science. Eos 99, https://doi.org/10.1029/2018EO104623 (2018).

  • 75.

    Blewitt, G., Kreemer, C., Hammond, W. C. & Gazeaux, J. MIDAS robust trend estimator for accurate GPS station velocities without step detection. J. Geophys. Res. Solid Earth 121, 2054–2068 (2016).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 76.

    Zlotnicki, V., Qu, Z. & Willis, J. MEaSUREs Gridded Sea Surface Height Anomalies Version 1812 (PODAAC, 2019); https://doi.org/10.5067/SLREF-CDRV2.

  • 77.

    Bos, M. S., Fernandes, R. M. S., Williams, S. D. P. & Bastos, L. Fast error analysis of continuous GNSS observations with missing data. J. Geod. 87, 351–360 (2013).

    ADS 

    Google Scholar
     

  • 78.

    Jevrejeva, S., Moore, J., Grinsted, A., Matthews, A. & Spada, G. Trends and acceleration in global and regional sea levels since 1807. Global Planet. Change 113, 11–22 (2014).

    ADS 

    Google Scholar
     

  • 79.

    Church, J. A. & White, N. J. Sea-level rise from the late 19th to the early 21st century. Surv. Geophys. 32, 585–602 (2011).

    ADS 

    Google Scholar
     

  • 80.

    Church, J. et al. in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. et al.) Ch. 13, 1137–1216 (Cambridge Univ. Press, 2013).

  • 81.

    Frederikse, T., Riva, R. E. M. & King, M. A. Ocean bottom deformation due to present-day mass redistribution and its impact on sea level observations. Geophys. Res. Lett. 44, 12306–12314 (2017).

    ADS 

    Google Scholar
     

  • 82.

    Langbein, J. Noise in two-color electronic distance meter measurements revisited. J. Geophys. Res. Solid Earth 109, B04406 (2004).

    ADS 

    Google Scholar
     

  • [ad_2]

    Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *