CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Bekier, J. et al. Changes in selected hydrophobic components during composting of municipal solid wastes. J. Soils Sedim. 14, 305–311 (2014).

    CAS 

    Google Scholar
     

  • 2.

    Pinamonti, F. & Zorzi, G. Experiences of compost use in agriculture and in land reclamation projects. In The Science of Composting (eds de Bertoldi, M. et al.) 517–527 (Blackie Academic & Professional, Cambridge, 1996).


    Google Scholar
     

  • 3.

    Weber, J. et al. The effect of a sandy soil amendment with municipal solid waste(MSW) compost on nitrogen uptake efficiency by plants. Eur. J. Agron. 54, 54–60 (2014).


    Google Scholar
     

  • 4.

    Jamroz, E. & Drozd, J. Influence of applying compost from municipal wastes on some physical properties of the soil. Int. Agrophys. 13, 167–170 (1999).


    Google Scholar
     

  • 5.

    Senesi, N. & Plaza, C. Role of humification processes in recycling organic wastes of various nature and sources as soil amendments. Clean: Soil, Air, Water 35(1), 26–41 (2007).

    CAS 

    Google Scholar
     

  • 6.

    Weber, J. et al. Agricultural and ecological aspects of a sandy soil as affected by the application of municipal solid waste composts. Soil Biol. Biochem. 39, 1294–1302 (2007).

    CAS 

    Google Scholar
     

  • 7.

    Zhang, J. et al. Effects of pysico-chemical parameters on the bacterial and fungal communities during agricultural waste composting. Bioresour. Technol. 102, 2950–2956 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Adani, F., Genevini, P. L., Gasperi, F. & Tambone, F. Composting and humification. Compost Sci. Utili. 7(1), 24–33 (1999).


    Google Scholar
     

  • 9.

    Chen, Y., Chefetz, B. & Hadar, Y. Formation and properties of humic substances originating from composts. In The Science of Composting (eds de Bertoldi, M. et al.) 382–393 (Blackie Academic & Professional, Cambridge, 1997).


    Google Scholar
     

  • 10.

    Bialowiec, A., Pilarski, G., Sobieraj, K., Medynska-Juraszek, A. & Stegenta-Dabrowska, S. Technological regime composting of sewage sludge with bio-waste in turning piles. Balance of heavy metals, macro – and micronutrients. Przem. Chem. 98(9), 1388–1391 (2019).

    CAS 

    Google Scholar
     

  • 11.

    Chen H., Dou J., Xu H. Remediation of Cr(VI)-contaminated soil with co-composting of three different biomass solid wastes. J. Soils Sedim. Doi:10.1007/s11368–017–1811–4 (2017)

  • 12.

    Leszczynska, D. & Kwiatkowska-Malina, J. The influence of organic matter on yield and quality of winter wheat triticum Aestivum ssp vulgare (l) cultivated on soils contaminated with heavy metals. Ecol. Chem. Eng. S-Chem. I Inzynieria Ekologiczna S 20(4), 701–708 (2003).


    Google Scholar
     

  • 13.

    Passoni, M. & Borin, M. Effects of different composts on soil nitrogen balance and dynamics in a biennial crop succession. Compost. Sci. Utiliz. 17(2), 108–116 (2009).


    Google Scholar
     

  • 14.

    Rosen, V. & Chen, Y. The influence of compost addition on heavy metal distribution between operationally defined geochemical fractions and on metal accumulation in plant. J Soils Sedim. 14, 713–720 (2014).


    Google Scholar
     

  • 15.

    Yu, H. et al. Accumulation of organic C components in soil and aggregates. Sci. Rep. https://doi.org/10.1038/srep13804 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Debiase, G. et al. Organic amendment and minimum tillage in winter wheat grown inMediterranean conditions: effects on yield performance, soil fertility and environmental impact. Eur. J. Agron. 75, 149–157 (2016).


    Google Scholar
     

  • 17.

    Dercova, K., Makovnikova, J., Barancikova, G. & Zuffa, J. Bioremediation of soil and wastewater contaminated with toxic metals. Chem. Listy 99(10), 682–693 (2005).

    CAS 

    Google Scholar
     

  • 18.

    Illera, V., Walter, I., Souza, P. & Cala, V. Short-term effects of biosolid and municipal solid waste applications on heavy metals distribution in a degraded soils under a semi-arid environment. Sci. Total Environ. 255, 29–44 (2000).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Keller, C., McGrath, S. P. & Dunham, S. J. Trace metal leaching through a soil grassland system after sewage sludge application. J. Environ. Qual. 31, 1550–1560 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Jamroz, E. Utilization of composted municipal wastes as components of horticulture media (in Polish with English abstract) Zeszyty Naukowe Akademii Rolniczej we Wrocławiu. Rolnictwo LXXVII 396, 9–27 (2000).


    Google Scholar
     

  • 21.

    Kałuża-Haładyn, A., Jamroz, E. & Bekier, J. The dynamics of some physical and physico-chemical properties during composting of municipal solid wastes and biomass of energetic plants. Soil Sci. Ann. 69(3), 155–159 (2018).


    Google Scholar
     

  • 22.

    Kałuża-Haładyn, A., Jamroz, E. & Bekier, J. Humic substances of differently matured composts produced from municipal solid wastes and biomass of energetic plants. Soil Sci. Ann. 70(4), 292–297. https://doi.org/10.2478/ssa-2019-0026 (2019).

    CAS 
    Article 

    Google Scholar
     

  • 23.

    Wu, L., Ma, L. Q. & Martinez, G. A. Comparison of methods for evaluating stability and maturity of biosolids compost. J. Environ. Qual. 29(2), 424–429 (2000).

    CAS 

    Google Scholar
     

  • 24.

    Chefetz, B., Hadar, Y. & Chen, Y. Dissolved organic carbon fractions formed during composting of municipal solid waste: properties and significance. Acta Hydrochim. Hydrobiol. 26, 172–179 (1998).

    CAS 

    Google Scholar
     

  • 25.

    Debska, B., Długosz, J., Piotrowska-Długosz, A. & Banach-Szott, M. The impact of a bio-fertilizer on the soil organic matter status and carbon sequestration—results from a field-scale study. J. Soils Sedim. 16, 2335–2343 (2016).

    CAS 

    Google Scholar
     

  • 26.

    Said-Pullicino, D. & Gigliotti, G. Oxidative biodegradation of dissolved organic matter during composting. Chemosphere 68, 1030–1040 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Malerba, A. D. et al. Hydrophilic and hydrophobic fractions of water-soluble organic matter in digestates obtained from different organic wastes. Int. Biodeter. Biodegr. 94, 73–78 (2014).

    CAS 

    Google Scholar
     

  • 28.

    Zhao, X., He, X., Xi, B., Gao, R. & Tan, W. Zhang H The evolution of water extractable organic matter and its association with microbial community dynamics during municipal solid waste composting. Waste Manage 56, 79–87 (2016).

    CAS 

    Google Scholar
     

  • 29.

    D’Imporzano, G. & Adani, F. The contribution of water soluble and water insoluble organic fractions to oxygen uptake rate during high rate composting. Biodegradation 18, 103–113 (2007).


    Google Scholar
     

  • 30.

    Leita, L. De Nobili M Water soluble fractions of heavy metals during composting of municipal solid waste. J. Environ. Qual. 20, 73–78 (1991).

    CAS 

    Google Scholar
     

  • 31.

    Adani, F., Gigliotti, G., Valentini, F. & Laraia, R. Respiratio index determination: a comparative study of different methods. Compost. Sci. Util. 11, 144–151 (2003).


    Google Scholar
     

  • 32.

    Brewer, L. J. & Sullivan, D. M. Maturity and stability evaluation of composted yard trimmings. Compost. Sci. Util. 11, 96–112 (2003).


    Google Scholar
     

  • 33.

    Fourti, O., Jedidi, N. & Hassen, A. Humic substances change during the co-composting process of municipal solid wastes and sewage sludge. World J. Microbiol. Biotechnol. 26, 2117–2122 (2010).

    CAS 

    Google Scholar
     

  • 34.

    Gotaas, H. B. Composting Sanitary Disposal and Reclamation of Organic Wastes (World Health Organization Palais Des Nations, Geneva, 1956).


    Google Scholar
     

  • 35.

    Harada, Y. & Inoko, A. The measurement of the cation-exchange capacity of composts for the estimation of the degree of maturity. Soil Sci. Plant Nutr. 26(1), 127–134 (1980).

    CAS 

    Google Scholar
     

  • 36.

    Said-Pullicino, D., Erriquens, F. G. & Gigliotti, G. Changes in the chemical characteristics of water-extractable organic matter during composting and their influence on compost stability and maturity. Biores. Technol. 98, 1822–1831 (2007).

    CAS 

    Google Scholar
     

  • 37.

    Hoekstra, N. J., Bosker, T. & Lantinga, E. A. Effects of cattle dung from farms with different feeding strategies on germination and initial root growth of cress (Lepidium sativum L). Agric. Ecosyst. Environ. 93, 189–196 (2002).


    Google Scholar
     

  • 38.

    Chanyasak, V. & Kubota, H. Carbon/organic N ratio in water extract as measure of composting degradation. J. Ferment. Technol. 59, 215–219 (1981).

    CAS 

    Google Scholar
     

  • 39.

    Chanyasak, V., Hirai, M. & Kubota, H. Changes of chemical components and nitrogen transformation in water extracts during composting of garbage. J. Ferment. Technol. 60, 439–446 (1982).

    CAS 

    Google Scholar
     

  • 40.

    Barberis, R. & Nappi, P. Evaluation of compost stability. In The Science of Composting (eds de Bertoldi, M. et al.) 175–184 (Blackie Academic & Professional, Cambridge, 1996).


    Google Scholar
     

  • 41.

    Chen, Y. Nuclear magnetic resonance, infra-red and pyrolysis: application of spectroscopic methodologies to maturity determination of composts. Compost. Sci. Util. 11(2), 152–168 (2003).

    MathSciNet 

    Google Scholar
     

  • 42.

    Drozd, J., Jezierski, A. & Chen, Y. Chemical and electron spin resonance properties of municipal solid waste composts. In Modern Agriculture and the Environment (eds Rosen, D. et al.) 395–400 (Kluwer Academic Publishers, Amsterdam, 1997).


    Google Scholar
     

  • 43.

    Iglesias, E. J. & Garcia, P. V. Evaluation of city refuse compost maturity: a review. Biol. Wastes. 27, 115–142 (1989).


    Google Scholar
     

  • 44.

    Wei, Y. et al. Changes in phosphorus fractions during organic wastes composting from different sources. Bioresour. Technol. 189, 349–356 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Petruzzelli, G. A. Heavy metals in compost and their effect on soil quality. In The Science of Composting (eds de Bertoldi, M. et al.) 213–223 (Blackie Academic & Professional, Cambridge, 1996).


    Google Scholar
     

  • 46.

    Cwielag-Piasecka, I. et al. Humic acid and biochar as specific sorbents of pesticides. J. Soils Sedim. 18(8), 2692–2702 (2018).

    CAS 

    Google Scholar
     

  • 47.

    Caricasole, P., Provenzano, M. R., Hatcher, P. G. & Senesi, N. Chemical characteristics of dissolved organic matter during composting of different organic wastes assessed by 13C CPMAS NMR spectroscopy. Bioresour. Technol. 101, 8232–8236 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 48.

    Gonzales-Vila, F. J., Almendros, G. & Madrid, F. Molecular alterations of organic fractions from urban waste in the course of composting and their further transformation in amended soil. Sci. Total Environ. 236, 215–229 (1999).

    ADS 

    Google Scholar
     

  • 49.

    Provenzano, M. R., Malerba, A. D., Pezzolla, D. & Gigliotti, G. Chemical and spectroscopic characterization of organic matter during the anaerobic digestion and successive composting of pig slurry. Waste Manage 34, 653–660 (2014).

    CAS 

    Google Scholar
     

  • 50.

    Traversa, A., Loffredo, E., Eliana, G. C. & Senesi, N. Water-extractable organic matter of different composts: a comparative study of properties and allelochemical effects on horticultural plants. Geoderma 156, 287–292 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • 51.

    Weber, J., Chen, Y., Jamroz, E. & Miano, T. Preface: humic substances in the environment. J. Soils Sedim. 18(8), 2665–2667 (2018).


    Google Scholar
     

  • 52.

    Castaldi, P., Garau, G. & Melis, P. Maturity assessment of compost from municipal solid waste through the study of enzyme activities and water-soluble fractions. Waste Manage 28, 534–540 (2008).

    CAS 

    Google Scholar
     

  • 53.

    Dell’Abate, M. T., Canali, S., Trinchera, A., Benedetti, A. & Sequi, P. Evaluation of the stability of organic matter in composts by means of humification parameters and thermal analysis. In The role of humic substances in the ecosystems and in environmental protection (eds Drozd, J. et al.) 841–846 (PTSH Polish Society of Humic Substances, Wroclaw, 1997).


    Google Scholar
     

  • 54.

    De Nobili, M., Baca, M. T., Fornasier, F. & Mondini, C. Ninhydrin reactive nitrogen of CHCl3 fumigated and non-fumigated compost extracts as a parameter to evaluate compost stability. In The Science of Composting (eds de Bertoldi, M. et al.) 255–261 (Blackie Academic & Professional, Cambridge, 1996).


    Google Scholar
     

  • 55.

    Hase, T. & Kawamura, K. Evaluating compost maturity with a newly proposed index based on a germination test using Komatsuna (Brassica rapa var. peruviridis) seeds. J. Mater. Cycles Waste Manag. 14, 220–227 (2012).

    CAS 

    Google Scholar
     

  • 56.

    Jimenez, E. I. & Garcia, V. P. Evaluation of city compost maturity A review. Biol. Wastes 27, 111–142 (1989).


    Google Scholar
     

  • 57.

    Raj, D. & Antil, R. S. Evaluation of maturity and stability parameters of composts prepared from agro-industrial wastes. Bioresour. Technol. 102, 2868–2873 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 58.

    Senesi, N. & Brunetti, G. Chemical and physico-chemical parameters for quality evaluation of humic substances produced during composting. In The Science of Composting (eds de Bertoldi, M. et al.) 195–212 (Blackie Academic & Professional, Cambridge, 1996).


    Google Scholar
     

  • 59.

    Massiani, C. & Domeizel, M. Quality of composts: organic matter stabilization and trace metal contamination. In The Science of Composting (eds de Bertoldi, M. et al.) 185–194 (Blackie Academic & Professional, Cambridge, 1996).


    Google Scholar
     

  • 60.

    Wierzbowska, J., Kovacik, P., Sienkiewicz, S., Krzebietke, S. & Bowszys, T. Determination of heavy metals and their availability to plants in soil fertilized with different waste substances. Environ. Monit. Assess. 190, 567. https://doi.org/10.1007/s10661-018-6941-7 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 61.

    Epstein, E. The science of composting (CRC Press, Taylor & Francis Group, 2019).


    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *