CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Michael, G. G. Planetary surface dating from crater size-frequency distribution measurements: Multiple resurfacing episodes and differential isochron fitting. Icarus 226, 885–890 (2013).

    ADS 
    Article 

    Google Scholar
     

  • 2.

    Clifford, S. M. A model for the hydrologic and climatic behavior of water on Mars. J. Geophys. Res. 98, 10973–11016 (1993).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 3.

    Clifford, S. M. A Model for the Climatic Behavior of Water of Mars. Ph.D. Thesis, University of Massachusetts (1984).

  • 4.

    Malin, M. C. & Edgett, K. S. Mars Global Surveyor Mars Orbiter Camera: Interplanetary cruise through primary mission. J. Geophys. Res. 106(E10), 23,429–423,570 (2001).

    ADS 
    Article 

    Google Scholar
     

  • 5.

    Buczkowski, D. L., Frey, H. V., Roark, J. H. & McGill, G. E. Buried impact craters: A topographic analysis of quasi-circular depressions, Utopia Basin, Mars. J. Geophys. Res. 110 (2005).

  • 6.

    Frey, H. V. Impact constraints on, and a chronology for, major events in early Mars history. J. Geophys. Res. 111(E8), https://doi.org/10.1029/2005je002449 (2006).

  • 7.

    Tanaka, K. L. et al. Geologic map of Mars. U.S. Geological Survey Scientific Investigations Map 3292, scale 1:20,000,000, http://pubs.usgs.gov/sim/3292/ Date of access: 03/14/2019 (2014).

  • 8.

    Rogers, A. D., Warner, N. H., Golombek, M. P., Head, J. W. & Cowart, J. C. Areally Extensive Surface Bedrock Exposures on Mars: Many Are Clastic Rocks, Not Lavas. Geophys. Res. Lett. 45(4), 1767–1777, https://doi.org/10.1002/2018gl077030 (2018).

    ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Mangold, N., Adeli, S., Conway, S., Ansan, V. & Langlais, B. A chronology of early Mars climatic evolution from impact crater degradation. J. Geophys. Res. 117, E04003, https://doi.org/10.1029/2011JE004005 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 10.

    Craddock, R. A., Maxwell, T. A. & Howard, A. D. Crater morphometry and modification in the Sinus Sabaeus and Margaritifer Sinus regions of Mars. J. Geophys. Res. 102(E6), 13321–13340, https://doi.org/10.1029/97je01084 (1997).

    ADS 
    Article 

    Google Scholar
     

  • 11.

    Forsberg-Taylor, N. K., Howard, A. D. & Craddock, R. A. Crater degradation in the Martian highlands: Morphometric analysis of the Sinus Sabaeus region and simulation modeling suggest fluvial processes. J. Geophys. Res. 109(E5), https://doi.org/10.1029/2004je002242 (2004).

  • 12.

    Irwin, R. P. K. III, Tanaka, K. L. & Robbins, S. J. Distribution of Early, Middle, and Late Noachian cratered surfaces in the Martian highlands: Implications for resurfacing events and processes. J. Geophys. Res. 118, 278–291 (2013).

    Article 

    Google Scholar
     

  • 13.

    Cawley, J. C. & Irwin, R. P. III Evolution of escarpments, pediments, and plains in the Noachian highlands of Mars. J. Geophys. Res. 123, 3167–3187 (2018).

    Article 

    Google Scholar
     

  • 14.

    Craddock, R. A. & Howard, A. D. The case for rainfall on a warm, wet early Mars. J. Geophys. Res.107(E11) (2002).

  • 15.

    Howard, A. D., Moore, J. M. & Irwin, R. P. III. An intense terminal epoch of widespread fluvial activity on early Mars—1. Valley network incision and associated deposits. J. Geophys. Res. 110, E12S14, https://doi.org/10.1029/2005JE002459 (2005).

    ADS 
    Article 

    Google Scholar
     

  • 16.

    Irwin, R. P. III, Howard, A. D., Craddock, R. A. & Moore, J. M. An intense terminal epoch of widespread fluvial activity on early Mars—2. Increased runoff and paleolake development. J. Geophys. Res. 110, E12S15, https://doi.org/10.1029/2005JE002460 (2005).

    ADS 
    Article 

    Google Scholar
     

  • 17.

    Mest, S. C. & Crown, D. A. Geologic map of MTM –20272 and –25272 quadrangles, Tyrrhena Terra region of Mars: U.S. Geological Survey Scientific Investigations Map 2934, scale 1:1,004,000, https://pubs.usgs.gov/sim/2006/2934/ Date of access: 04/28/2019 (2006).

  • 18.

    Fassett, C. I. & Head, J. W. III. The timing of Martian valley network activity—Constraints from buffered crater counting. Icarus 195, 61–89, https://doi.org/10.1016/j.icarus.2007.12.009 (2008).

    ADS 
    Article 

    Google Scholar
     

  • 19.

    Fassett, C. I. & Head, J. W. III Valley network-fed, open-basin lakes on Mars—Distribution and implications for Noachian surface and subsurface hydrology. Icarus 198, 37–56, https://doi.org/10.1016/j.icarus.2008.06.016 (2008).

    ADS 
    Article 

    Google Scholar
     

  • 20.

    Grant, J. A., Wilson, S. A., Fortezzo, C. M. & Clark, D. A. Geologic map of MTM –20012 and –25012 quadrangles, Margaritifer Terra region of Mars: U.S. Geological Survey Scientific Investigations Map 3041, scale 1:1,000,000, https://pubs.usgs.gov/sim/3041/ Date of access: 04/28/2019 (2009).

  • 21.

    Hynek, B. M., Beach, M. & Hoke, M. R. T. Updated global map of Martian valley networks and implications for climate and hydrologic processes. J. Geophys. Res. 115, E09008, https://doi.org/10.1029/2009JE003548 (2010).

    ADS 
    Article 

    Google Scholar
     

  • 22.

    Barnhart, C.J. et al. Long-term precipitation and late-stage valley network formation: landform simulations of Parana Basin, Mars. J. Geophys. Res. 114 (E01003) (2009).

  • 23.

    Hoke, M. R. T., Hynek, B. M. & Tucker, G. E. Formation timescales of large Martian valley networks. Earth and Planetary Science Letters 312, 1–12 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 24.

    Segura, T. L., Toon, O. B., Colaprete, A. & Zahnle, K. J. Environmental effects of large impacts on Mars. Science 298, 1977–1980 (2002).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 25.

    Segura, T. L., Toon, O. B. & Colaprete, A. Modeling the environmental effects of moderate-sized impacts on Mars. J. Geophys. Res. 113, E11007, https://doi.org/10.1029/2008JE003147 (2008).

    ADS 
    Article 

    Google Scholar
     

  • 26.

    Segura, T. L. & McKay, C. P. O.B. Toon. An impact-induced, stable, runaway climate on Mars. Icarus 220(1), 144–148, https://doi.org/10.1016/j.icarus.2012.04.013 (2012).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 27.

    Steakley, K., Murphy, J., Kahre, M., Haberle, R. & King, A. Testing the impact heating hypothesis for early Mars with a 3-D global climate model. Icarus 330, 169–188 (2019).

    ADS 
    Article 

    Google Scholar
     

  • 28.

    Turbet, M. et al. The environmental impact of very large bolide impacts on early Mars explored with a hierarchy of numerical models. Icarus 225, 113419, https://doi.org/10.1016/j.icarus.2019.113419 (2020).

    Article 

    Google Scholar
     

  • 29.

    Pieri, D. C. Geomorphology of Martian valleys (Doctoral dissertation). Ithaca, NY: Cornell University. In Advances in Planetary Geology, 1–160, NASA Technical Memorandum 81979 (1980).

  • 30.

    Craddock, R. A., Bandeira, L. & Howard, A. D. An assessment of regional variations in Martian modified impact crater morphology. J. Geophys. Res. 123(3), 763–779, https://doi.org/10.1002/2017JE005412 (2018).

    CAS 
    Article 

    Google Scholar
     

  • 31.

    Tanaka, K. L. & Leonard, G. J. Geology and landscape evolution of the Hellas region of Mars. J. Geophys. Res. 100, 5407–5432 (1995).

    ADS 
    Article 

    Google Scholar
     

  • 32.

    Leonard, G. J. & Tanaka, K. L. Geologic map of the Hellas region of Mars. U.S. Geol. Surv. Geol. Invest. Ser. Map I-2694, scale 1:5M, https://pubs.usgs.gov/imap/i2694/ Date of access: 04/28/2019 (2001).

  • 33.

    Crown, D. A., Bleamaster, L. F., Mest, S. C. & Mustard, J. F. Geologic mapping of the NW rim of Hellas basin, Mars, Lunar and Planetary Science Conference XL, Abstract #1705, Lunar and Planetary Institute, Houston (2009).

  • 34.

    Crown, D. A., Bleamaster, L. F., Mest, S. C. Mustard, J. F. & Vincendon, M. Geologic mapping of the NW rim of Hellas Basin, Mars: Evidence for an ancient buried landscape, Lunar and Planetary Science Conference XLI, Abstract #1888, Lunar and Planetary Institute, Houston (2010).

  • 35.

    Crown, D. A., Bleamaster, L. F., Mest, S. C. Mustard, J. F. & Vincendon, M. Evidence for an ancient buried landscape of the NW rim of Hellas Basin, Mars, in Abstracts of the Annual Meeting of Planetary Geologic Mappers, Flagstaff, AZ, 2010, NASA/CP-2010-217041 (2010).

  • 36.

    Christensen, P. R. et al. Morphology and composition of the surface of Mars: Mars Odyssey THEMIS results. Science 300, 2056–2061 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 37.

    Chuang, F. C., Noe Dobrea, E. Z., Mest, S. C. & Crown, D. A. Geomorphologic mapping and mineralogy of pits in intercrater plains, northwest circum-Hellas region, Mars, Lunar and Planetary Science Conference XLVI, Abstract #2542, Lunar and Planetary Institute, Houston. (2015).

  • 38.

    Noe Dobrea, E. Z., Mest, S. C., Chuang, F. C. & Crown, D. A. Fluvial and hydrothermal deposits in the circum-Hellas region, 8th International Conference on Mars, Pasadena, CA. https://www.hou.usra.edu/meetings/8thmars2014/pdf/1261.pdf (2014).

  • 39.

    Salese, F. et al. A sedimentary origin for intercrater plains north of the Hellas basin: Implications for climate conditions and erosion rates on early Mars. J. Geophys. Res. 121, 2239–2267 (2016).

    Article 

    Google Scholar
     

  • 40.

    Williams, R. M. E., Irwin, R. B. & Zimbelman, J. R. Evaluation of paleohydrologic models for terrestrial inverted channels: Implications for application to martian sinuous ridges. Geomorphology 107, 300–315 (2009).

    ADS 
    Article 

    Google Scholar
     

  • 41.

    Davis, J. M., Balme, M., Grindrod, P. M., Williams, R. M. E. & Gupta, S. Extensive Noachian fluvial systems in Arabia Terra: Implications for early Martian climate. Geology 44(10), 847–850, https://doi.org/10.1130/G38247.1 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 42.

    Morgan, A. M. et al. Sedimentology and climatic environment of alluvial fans in the martian Saheki crater and a comparison with terrestrial fans in the Atacama Desert. Icarus 229, 131–156 (2014).

    ADS 
    Article 

    Google Scholar
     

  • 43.

    Golombek, M. P. et al. Small crater modification on Meridiani Planum and implications for erosion rates and climate change on Mars. J. Geophys. Res. Planets 119, 2522–2547, https://doi.org/10.1002/2014JE004658 (2014).

    ADS 
    Article 

    Google Scholar
     

  • 44.

    Sagan, S. et al. Variable features on Mars, 2, Mariner 9 global results. Jour. Geophys. Res 78, 4163–4196 (1973).

    ADS 
    Article 

    Google Scholar
     

  • 45.

    Geissler, P. E., Fenton, L. K., Marie-therese, E. & Mukherjee, P. Orbital monitoring of martian surface changes. Icarus 278, 279–300 (2016).

    ADS 
    Article 

    Google Scholar
     

  • 46.

    Moore, J. M. Nature of the Mantling Deposit in the Heavily Cratered Terrain of Northeastern. Arabia. Jour. Geophys. Res. 95(B9), 14,279–14,289 (1990).

    ADS 
    Article 

    Google Scholar
     

  • 47.

    Zaki, A. S., Giegengack, S. & S. Castelltort. Inverted Channels in the Eastern Sahara—Distribution, Formation, and Interpretation to Enable Reconstruction of Paleodrainage Networks. In: J. Herget, A. Fontana (Eds.), Palaeohydrology: Traces, Tracks and Trails of Extreme Events. Springer-Nature, 117-134. https://doi.org/10.1007/978-3-030-23315-0_6 (2020).

  • 48.

    Cannon, K. M., Parman, S. W. & Mustard, J. F. Primordial clays on Mars formed beneath a steam or supercritical atmosphere. Nature 552, 88–91, https://doi.org/10.1038/nature24657 (2017).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 49.

    Carter, J. et al. Widespread surface weathering on early Mars: A case for a warmer and wetter climate. Icarus 248, 373–382 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 50.

    Feulner, G. 2012. The faint young Sun problem. Rev Geophys 50 (2), https://doi.org/10.1029/2011RG000375 (2012).

  • 51.

    Pullen, A. et al. The Qaidam Basin and northern Tibetan Plateau as dust sources for the Quaternary Chinese Loess Plateau and paleoclimatic implications. Geology 39, 1031–1034 (2011).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 52.

    Head, J. W. & Marchant, D. R. The climate history of early Mars: insights from the Antarctic McMurdo Dry Valleys hydrologic system. Antarct. Sci. 26, 774–800 (2014).

    ADS 
    Article 

    Google Scholar
     

  • 53.

    Fastook, J. L. & Head, J. W. Glaciation in the Late Noachian Icy Highlands: Ice accumulation, distribution, flow rates, basal melting, and top-down melting rates and patterns. Planet. Space Sci. 106, 82–98 (2015).

    ADS 
    Article 

    Google Scholar
     

  • 54.

    Wordsworth, R. D., Kerber, L., Pierrehumbert, R. T., Forget, R. & Head, J. W. Comparison of “warm and wet” and “cold and icy” scenarios for early Mars in a 3-D climate model. J. Geophys. Res. 120, 2015JE004787 (2015).

    Article 

    Google Scholar
     

  • 55.

    Robbins, S. J. & Hynek, B. M., A new global database of Mars impact craters ≥1 km—1. Database creation, properties, and parameters: J. Geophys. Research. 117, no. E05004 https://doi.org/10.1029/2011JE003966 (2012).

  • 56.

    Schultz, P. H. & Quintana, S. N. Impact-generated winds on Mars. Icarus 292, 86–101, https://doi.org/10.1016/j.icarus.2017.03.029 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 57.

    Kargel, J. S. et al. Geomorphic, Tectonic, and Geologic Controls of Geohazards Induced by Nepal’s 2015 Gorkha Earthquake, Research Article. Science, 351(6269), aac8353 (2016).

    CAS 
    Article 

    Google Scholar
     

  • 58.

    Koeberl, C. & Ivanov, B. A. Asteroid impact effects on Snowball Earth. Meteoritics & Planetary Science 54(10), 2273–2285 (2019).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 59.

    Baker, V. R. & Strom, R. G. Ancient oceans, ice sheets, and the hydrological cycle on Mars. Nature 352(6336), 589 (1991).

    ADS 
    Article 

    Google Scholar
     

  • 60.

    Rodriguez, J. A. P. et al. Control of impact crater fracture systems on subsurface hydrology, ground subsidence, and collapse, Mars. J. Geophys. Res. 110, E6, https://doi.org/10.1029/2004JE002365 (2005).

    Article 

    Google Scholar
     

  • 61.

    Carter, J., Poulet, F., Bibring, J. P., Mangold, N. & Murchie, S. Hydrous minerals on Mars as seen by the CRISM and OMEGA imaging spectrometers: updated global view. J. Geophys. Res. 118, 831–858 (2013).

    CAS 
    Article 

    Google Scholar
     

  • 62.

    Dodd, N. S. et al. Evidence for early life in Earth’s oldest hydrothermal vent precipitates. Nature 543, 60–64 (2017).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 63.

    Gomes, R., Levison, H. F., Tsiganis, K., Morbidelli, A. Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature. 435 (7041): 466–469 https://doi.org/10.1038/nature03676. PMID 15917802 (2005).

  • 64.

    Sephton, M. A. Organic matter in ancient meteorites. Astronomy and Geophysics, 45(2). https://doi.org/10.1046/j.1468-4004.2003.45208.x (2004).

  • 65.

    Cooper, G. et al. Carbonaceous meteorites as a source of sugar-related organic compounds for the early Earth. Nature 414(6866), 879–883, https://doi.org/10.1038/414879a (2001).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar
     

  • 66.

    Kissin, Y. Hydrocarbon components in carbonaceous meteorites. Geochimica et Cosmochimica Acta 67(9), 1723–1735, https://doi.org/10.1016/s0016-7037(02)00982-1 (2003).

  • 67.

    Yang, D. et al. Enhanced transcription and translation in clay hydrogel and implications for early life evolution. Sci Rep 3, 3165, https://doi.org/10.1038/srep03165 (2013).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 68.

    Wacey, D. et al. Enhanced cellular preservation by clay minerals in 1 billion-year-old lakes. Scientific Reports 4, 5841 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 69.

    Keil, R. G. & Mayer, L. M. Mineral matrices and organic matter. Treatise Geochem. Org Geochem 12, 337–359 (2014).


    Google Scholar
     

  • 70.

    Oehler, D. Z. and Allen, C. C. Evidence for pervasive mud volcanism in Acidalia Planitia. Mars, Icarus 208, 636–657 (2010).

    ADS 
    Article 

    Google Scholar
     

  • 71.

    Christensen, P. R. et al. THEMIS Public Data Releases, Image Explorer, Planetary Data System node, Arizona State University, http://themis-data.asu.edu, Date of access: 04/28/2019 (2006).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *