CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 2.

    Erez, J., Reynaud, S., Silverman, J., Schneider, K. & Allemand, D. Coral calcification under ocean acidification and global change. In Coral Reefs: An Ecosystem in Transition (eds Dubinksy, Z. & Stambler, N.) 151–176 (Springer, New York, 2011).


    Google Scholar
     

  • 3.

    Allemand, D., Tambutte, E., Zoccola, D. & Tambutte, S. Coral calcification, cells to reefs. In Coral Reefs: An Ecosystem in Transition (eds Dubinksy, Z. & Stambler, N.) 119–150 (Springer, New York, 2011).


    Google Scholar
     

  • 4.

    Venn, A. et al. Impact of seawater acidification on pH at the tissue-skeleton interface and calcification in reef corals. Proc. Natl. Acad. Sci. 110, 1634–1639 (2012).

    ADS 
    PubMed 

    Google Scholar
     

  • 5.

    Mass, T., Drake, J. L., Peters, E. C., Jiang, W. & Falkowski, P. G. Immunolocalization of skeletal matrix proteins in tissue and mineral of the coral Stylophora pistillata. Proc. Natl. Acad. Sci. U. S. A. 111, 12728–12733 (2014).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Falini, G., Fermani, S. & Goffredo, S. Coral biomineralization: a focus on intra-skeletal organic matrix and calcification. Semin. Cell Dev. Biol. 46, 17–26 (2015).

    PubMed 

    Google Scholar
     

  • 7.

    Helman, Y. et al. Extracellular matrix production and calcium carbonate precipitation by coral cells in vitro. Proc. Natl. Acad. Sci. U. S. A. 105, 54–58 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Falini, G. et al. Control of aragonite deposition in colonial corals by intra-skeletal macromolecules. J. Struct. Biol. 183, 226–238 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Reggi, M. et al. Biomineralization in mediterranean corals: the role of the intraskeletal organic matrix. Cryst. Growth Des. 14, 4310–4320 (2014).

    CAS 

    Google Scholar
     

  • 10.

    Reggi, M. et al. Influence of intra-skeletal coral lipids on calcium carbonate precipitation. CrystEngComm 18, 8829–8833 (2016).

    CAS 

    Google Scholar
     

  • 11.

    Clode, P. L. & Marshall, A. T. Calcium associated with a fibrillar organic matrix in the scleractinian coral Galaxea fascicularis. Protoplasma 220, 153–161 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • 12.

    Puverel, S. et al. Soluble organic matrix of two Scleractinian corals: partial and comparative analysis. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 141, 480–487 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Isa, Y. & Okazaki, M. Some observations on the Ca2+-binding phospholipid from scleractinian coral skeletons. Comp. Biochem. Physiol. B 87, 507–512 (1987).


    Google Scholar
     

  • 14.

    Cuif, J. P., Dauphin, Y., Freiwald, A., Gautret, P. & Zibrowius, H. Biochemical markers of zooxanthellae symbiosis in soluble matrices of skeleton of 24 Scleractinia species. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 123, 269–278 (1999).


    Google Scholar
     

  • 15.

    Picker, A., Kellermeier, M., Seto, J., Gebauer, D. & Cölfen, H. The multiple effects of amino acids on the early stages of calcium carbonate crystallization. Zeitschrift fur Krist. 227, 744–757 (2012).

    CAS 

    Google Scholar
     

  • 16.

    Tong, H. et al. Control over the crystal phase, shape, size and aggregation of calcium carbonate via a L-aspartic acid inducing process. Biomaterials 25, 3923–3929 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 17.

    Tambutté, E. et al. Morphological plasticity of the coral skeleton under CO2-driven seawater acidification. Nat. Commun. 6, 1–9 (2015).


    Google Scholar
     

  • 18.

    Coronado, I., Fine, M., Bosellini, F. R. & Stolarski, J. Impact of ocean acidification on crystallographic vital effect of the coral skeleton. Nat. Commun. 10, 1–9 (2019).

    CAS 

    Google Scholar
     

  • 19.

    Elhadj, S., De Yoreo, J. J., Hoyer, J. R. & Dove, P. M. Role of molecular charge and hydrophilicity in regulating the kinetics of crystal growth. Proc. Natl. Acad. Sci. U. S. A. 103, 19237–19242 (2006).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Cole, C., Finch, A. A., Hintz, C., Hintz, K. & Allison, N. Effects of seawater pCO2 and temperature on calcification and productivity in the coral genus Porites spp.: an exploration of potential interaction mechanisms. Coral Reefs 37, 471–481 (2018).

    ADS 

    Google Scholar
     

  • 21.

    Allison, N. et al. The effect of ocean acidification on tropical coral calcification: insights from calcification fluid DIC chemistry. Chem. Geol. 497, 162–169 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 22.

    Cole, C., Finch, A., Hintz, C., Hintz, K. & Allison, N. Understanding cold bias: variable response of skeletal Sr/Ca to seawater pCO2 in acclimated massive Porites corals. Sci. Rep. 6, 1–8 (2016).


    Google Scholar
     

  • 23.

    Burton, E. A. & Walter, L. M. Relative precipitation rates of aragonite and Mg calcite from seawater: temperature or carbonate ion control. Geology 15, 111–114 (1987).

    ADS 
    CAS 

    Google Scholar
     

  • 24.

    Ramos-Silva, P. et al. The skeletal proteome of the coral Acropora millepora: the evolution of calcification by co-option and domain shuffling. Mol. Biol. Evol. 30, 2099–2112. https://doi.org/10.1093/molbev/mst109 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Gebauer, D., Kellermeier, M., Gale, J. D., Bergström, L. & Cölfen, H. Pre-nucleation clusters as solute precursors in crystallisation. Chem. Soc. Rev. 43, 2348–2371 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Pouget, E. et al. The initial stages of template-controlled CaCO3 formation revealed by cryo-TEM. Science 323, 1455–1458 (2009).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Demichelis, R. et al. Simulation of crystallization of biominerals. Annu. Rev. Mater. Res. 48, 327–352 (2018).

    CAS 

    Google Scholar
     

  • 28.

    Malkaj, P. & Dalas, E. Calcium carbonate crystallization in the presence of aspartic acid. Cryst. Growth Des. 4, 721–723 (2004).

    CAS 

    Google Scholar
     

  • 29.

    Finney, A. R. & Rodger, P. M. Probing the structure and stability of calcium carbonate pre-nucleation clusters. Faraday Discuss. 159, 47–60 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • 30.

    Sikirić, M. D. & Füredi-Milhofer, H. The influence of surface active molecules on the crystallization of biominerals in solution. Adv. Colloid Interface Sci. 128, 135–158 (2006).

    PubMed 

    Google Scholar
     

  • 31.

    Tai, C. Y. & Chen, F. B. Polymorphism of CaCO3 precipitated in a constant-composition environment. AIChE J. 44, 1790–1798 (1998).

    CAS 

    Google Scholar
     

  • 32.

    Sand, K. K., Pedersen, C. S., Matthiesen, J., Dobberschütz, S. & Stipp, S. L. S. Controlling biomineralisation with cations. Nanoscale 9, 12925–12933 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 33.

    Addadi, L. & Weiner, S. Interactions between acidic proteins and crystals: stereochemical requirements in biomineralization. Proc Natl. Acad. Sci. 82, 4110–4114 (1985).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Mass, T. et al. Cloning and characterization of four novel coral acid-rich proteins that precipitate carbonates in vitro. Curr. Biol. 23, 1126–1131 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    DeCarlo, T. M. et al. Coral calcifying fluid aragonite saturation states derived from Raman spectroscopy. Biogeosciences 14, 5253–5269 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 36.

    De Stefano, C., Foti, C., Gianguzza, A., Rigano, C. & Sammartano, S. Chemical speciation of amino acids in electrolyte solutions containing major components of natural fluids. Chem. Speciat. Bioavailab. 7, 1–8 (1995).


    Google Scholar
     

  • 37.

    Puverel, S. et al. Evidence of low molecular weight components in the organic matrix of the reef building coral, Stylophora pistillata. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 147, 850–856 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    Cantaert, B., Beniash, E. & Meldrum, F. C. The role of poly(aspartic acid) in the precipitation of calcium phosphate in confinement. J. Mater. Chem. B 1, 6586–6595 (2013).

    CAS 

    Google Scholar
     

  • 39.

    Sevilgen, D. S. et al. Full in vivo characterization of carbonate chemistry at the site of calcification in corals. Sci. Adv. 5, eaau7447 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Tomiak, P. J. et al. Testing the limitations of artificial protein degradation kinetics using known-age massive Porites coral skeletons. Quat. Geochronol. 16, 87–109 (2013).


    Google Scholar
     

  • 41.

    Kaufman, D. S. & Manley, W. F. A new procedure for determining DL amino acid ratios in fossils using reverse phase liquid chromatography. Quat. Sci. Rev. 17, 987–1000 (1998).

    ADS 

    Google Scholar
     

  • 42.

    Lueker, T. J., Dickson, A. G. & Keeling, C. D. Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: validation based on laboratory measurements of CO2 in gas and seawater at equilibrium. Mar. Chem. 70, 105–119 (2000).

    CAS 

    Google Scholar
     

  • 43.

    Dickson, A. Standard potential of the reaction: AgCl (s) + 12H2 (g) = Ag (s) + HCl (aq) and the standard acidity constant of the ion HSO4 in synthetic sea water from 273.15 to 318.15 K. J. Chem. Thermodyn. 22, 113–127 (1990).

    CAS 

    Google Scholar
     

  • 44.

    Uppström, L. The boron/chlorinity ratio of deep-sea water from the Pacific Ocean. Deep Sea Res. Oceanogr. Abstr. 21, 161–162 (1974).

    ADS 

    Google Scholar
     

  • 45.

    Brunauer, S., Deming, L. S., Deming, W. E. & Teller, E. On a theory of the van der Waals adsorption of gases. J. Am. Chem. Soc. 62, 1723–1732 (1940).

    CAS 

    Google Scholar
     

  • 46.

    Evans, D., Webb, P. B., Penkman, K., Kröger, R. & Allison, N. The characteristics and biological relevance of inorganic amorphous calcium carbonate (ACC) precipitated from seawater. Cryst. Growth Des. 19, 4300–4313 (2019).

    CAS 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *