CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Anguela, X. M. & High, K. A. Entering the modern era of gene therapy. Annu Rev. Med.70, 273–288 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Weng, Y. et al. RNAi therapeutic and its innovative biotechnological evolution. Biotechnol. Adv.37, 801–825 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Weng, Y. et al. The challenge and prospect of mRNA therapeutics landscape. Biotechnol. Adv.40, 107534 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Li, H. et al. Applications of genome editing technology in the targeted therapy of human diseases: mechanisms, advances and prospects. Signal Transduct. Target Ther.5, 1 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Setten, R. L., Rossi, J. J. & Han, S. P. The current state and future directions of RNAi-based therapeutics. Nat. Rev. Drug Discov.18, 421–446 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Carolyn Napoli, C. L. & Richard, J. lntroduction of a chimeric chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell2, 279–289 (1990).


    Google Scholar
     

  • 7.

    Elbashir, S. M. et al. Duplexes of 21±nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature411, 494–498 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Huang, Y. Y. Approval of the first-ever RNAi therapeutics and its technological development history. Prog. Biochem. Biophys.46, 313–322 (2019).


    Google Scholar
     

  • 9.

    Sardh, E. et al. Phase 1 trial of an RNA interference therapy for acute intermittent porphyria. N. Engl. J. Med.380, 549–558 (2019).

    PubMed 

    Google Scholar
     

  • 10.

    Bissell, D. M. et al. ENVISION, a phase 3 study of safety and efficacy of givosiran, an investigational RNAi therapeutic, in acute hepatic porphyria patients. Hepatology70, 100A–101A (2019).


    Google Scholar
     

  • 11.

    de Paula Brandao, P. R., Titze-de-Almeida, S. S. & Titze-de-Almeida, R. Leading R. N. A. Interference therapeutics part 2: silencing delta-aminolevulinic acid synthase 1, with a focus on givosiran. Mol. Diagn. Ther.24, 61–68 (2019).

  • 12.

    Agarwal, S. et al. Pharmacokinetics and pharmacodynamics of the small interfering ribonucleic acid (siRNA), givosiran, in patients with acute hepatic porphyria. Clin. Pharmacol. Ther.
    https://doi.org/10.1002/cpt.1802, (2020).

  • 13.

    Cho, W. G. et al. Small interfering RNA-induced TLR3 activation inhibits blood and lymphatic vessel growth. PNAS106, 7137–7142 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 14.

    Hu, B. et al. Clinical advances of siRNA therapeutics. J. Gene Med.21, e3097 (2019).

    PubMed 

    Google Scholar
     

  • 15.

    Guo, D. X. et al. Photostable and biocompatible fluorescent silicon nanoparticles for imaging-guided co-delivery of siRNA and doxorubicin to drug-resistant. Cancer Cells Nano-Micro Lett.11, 13 (2019).

    CAS 

    Google Scholar
     

  • 16.

    Zheng, Z. et al. Folate-displaying exosome mediated cytosolic delivery of siRNA avoiding endosome trapping. J. Control. Release311-312, 43–49 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 17.

    Zheng, M. et al. ROS-responsive polymeric siRNA nanomedicine stabilized by triple interactions for the robust glioblastoma combinational RNAi therapy. Adv. Mater.31, e1903277 (2019).

    PubMed 

    Google Scholar
     

  • 18.

    Kim, M., Kim, G., Hwang, D. W. & Lee, M. Delivery of high mobility group box-1 siRNA using brain-targeting exosomes for ischemic stroke therapy. J. Biomed. Nanotechnol.15, 2401–2412 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Liu, J. et al. Effective gene silencing mediated by polypeptide nanoparticles LAH4-L1-siMDR1 in multi-drug resistant human breast cancer. J. Biomed. Nanotechnol.15, 531–543 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Wang, Y., Li, C., Du, L. & Liu, Y. A reactive oxygen species-responsive dendrimer with low cytotoxicity for efficient and targeted gene delivery. Chin. Chem. Lett.31, 275–280 (2020).

    CAS 

    Google Scholar
     

  • 21.

    Chen, Y. et al. A supramolecular co-delivery strategy for combined breast cancer treatment and metastasis prevention. Chin. Chem. Lett.31, 1153–1158 (2020).

    CAS 

    Google Scholar
     

  • 22.

    Ma, J. et al. Preparation of poly(glutamic acid) shielding micelles self-assembled from polylysine-b-polyphenylalanine for gene and drug codelivery. Chinese Chem. Lett. https://doi.org/10.1016/j.cclet.2020.02.034 (2020).

  • 23.

    Kleinman, M. E. et al. Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature452, 591–597 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Barakat, M. R. & Kaiser, P. K. VEGF inhibitors for the treatment of neovascular age-related macular degeneration. Expert Opin. Investig. Drugs18, 637–646 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 25.

    Reich, S. J. et al. Small interfering RNA (siRNA) targeting VEGF effectively inhibits ocular neovascularization in a mouse model. Mol. Vis.9, 210–216 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • 26.

    Shen, J. et al. Suppression of ocular neovascularization with siRNA targeting VEGF receptor 1. Gene Ther.13, 225–234 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Sioud, M., Furset, G. & Cekaite, L. Suppression of immunostimulatory siRNA-driven innate immune activation by 2’-modified RNAs. Biochem Biophys. Res. Commun.361, 122–126 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Song, X. et al. Site-specific modification using the 2’-methoxyethyl group improves the specificity and activity of siRNAs. Mol. Ther. Nucleic Acids9, 242–250 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Fluiter, K., Mook, O. R. & Baas, F. The therapeutic potential of LNA-modified siRNAs: reduction of off-target effects by chemical modification of the siRNA sequence. Methods Mol. Biol.487, 189–203 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Bramsen, J. B. et al. A screen of chemical modifications identifies position-specific modification by UNA to most potently reduce siRNA off-target effects. Nucleic Acids Res.38, 5761–5773 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 31.

    Janas, M. M. et al. Selection of GalNAc-conjugated siRNAs with limited off-target-driven rat hepatotoxicity. Nat. Commun.9, 723 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Khvorova, A. & Watts, J. K. The chemical evolution of oligonucleotide therapies of clinical utility. Nat. Biotechnol.35, 238–248 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Ju¨rgen Soutschek, A. A. et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. nature432, 173–178 (2004).


    Google Scholar
     

  • 34.

    Coelho, T. et al. Safety and efficacy of RNAi therapy for transthyretin amyloidosis. N. Engl. J. Med.369, 819–829 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Adams, D. et al. Patisiran, an RNAi therapeutic, for hereditary transthyretin amyloidosis. N. Engl. J. Med.379, 11–21 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Titze-de-Almeida, R., David, C. & Titze-de-Almeida, S. S. The race of 10 synthetic RNAi-based drugs to the pharmaceutical market. Pharm. Res.34, 1339–1363 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 37.

    Khvorova, A. Oligonucleotide therapeutics—a new class of cholesterol-lowering drugs. N. Engl. J. Med. 376, 4–7 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    Fitzgerald, K. et al. A highly durable RNAi therapeutic inhibitor of PCSK9. N. Engl. J. Med.376, 41–51 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Bennett, C. F. Therapeutic antisense oligonucleotides are coming of age. Annu Rev. Med.70, 307–321 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Rozema, D. B. in Annual Reports in Medicinal Chemistry, Vol 50: Platform Technologies in Drug Discovery and Validation Vol. 50 Annual Reports in Medicinal Chemistry (ed. Goodnow, R. A.) 17–59 (Elsevier Academic Press Inc, 2017).

  • 41.

    Yu, R. Z. et al. Cross-species pharmacokinetic comparison from mouse to man of a second-generation antisense oligonucleotide, ISIS 301012, targeting human apolipoprotein B-100. Drug Metab. Dispos.35, 460–468 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 42.

    Geselowitz, D. A. & Neckers, L. M. Bovine serum albumin is a major oligonucleotide-binding protein found on the surface of cultured cells. Antisense Res. Dev.5, 213–217 (1995).

    CAS 
    PubMed 

    Google Scholar
     

  • 43.

    Liang, X. H., Sun, H., Shen, W. & Crooke, S. T. Identification and characterization of intracellular proteins that bind oligonucleotides with phosphorothioate linkages. Nucleic Acids Res.43, 2927–2945 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Crooke, S. T. et al. Cellular uptake and trafficking of antisense oligonucleotides. Nat. Biotechnol.35, 230–237 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 45.

    Shen, W. et al. Chemical modification of PS-ASO therapeutics reduces cellular protein-binding and improves the therapeutic index. Nat. Biotechnol.37, 640–650 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 46.

    Migawa, M. T. et al. Site-specific replacement of phosphorothioate with alkyl phosphonate linkages enhances the therapeutic profile of gapmer ASOs by modulating interactions with cellular proteins. Nucleic Acids Res.47, 5465–5479 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Uyechi, L. S., Gagné, L., Thurston, G. & Szoka, F. C. Jr Mechanism of lipoplex gene delivery in mouse lung: binding and internalization of fluorescent lipid and DNA components. Gene Ther.8, 828–836 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 48.

    Huang, Y. et al. Elimination pathways of systemically delivered siRNA. Mol. Ther.19, 381–385 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 49.

    Huang, Y. et al. Pharmacokinetic behaviors of intravenously administered siRNA in glandular tissues. Theranostics6, 1528–1541 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 50.

    Huang, Y. & Liang, Z. Pharmacokinetic profiles of naked and nano-formulated siRNAs in glandular tissues. Nanomed. Nanotechnol. Biol. Med.14, 1773 (2018).


    Google Scholar
     

  • 51.

    Iwamoto, N. et al. Control of phosphorothioate stereochemistry substantially increases the efficacy of antisense oligonucleotides. Nat. Biotechnol.35, 845–851 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 52.

    Ostergaard, M. E. et al. Understanding the effect of controlling phosphorothioate chirality in the DNA gap on the potency and safety of gapmer antisense oligonucleotides. Nucleic Acids Res.48, 1691–1700 (2020).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 53.

    Alnylam. Chirally-enriched double-stranded RNA agents. World Intellect. Prop. Organ.WO2019126651, 1–293 (2019).


    Google Scholar
     

  • 54.

    Marshall, W. S. & Caruthers, M. H. Phosphorodithioate DNA as a potential therapeutic drug. Science259, 1564–1570 (1993).

    CAS 
    PubMed 

    Google Scholar
     

  • 55.

    Nielsen, P. E., Egholm, M., Berg, R. H. & Buchardt, O. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science254, 1497–1500 (1991).

    CAS 
    PubMed 

    Google Scholar
     

  • 56.

    Ndeboko, B. et al. Role of cell-penetrating peptides in intracellular delivery of peptide nucleic acids targeting hepadnaviral replication. Mol. Ther. Nucleic Acids9, 162–169 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Zeng, Z. et al. A Tat-conjugated peptide nucleic acid Tat-PNA-DR inhibits hepatitis B virus replication in vitro and in vivo by targeting LTR direct repeats of HBV RNA. Mol. Ther. Nucleic Acids5, e295 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 58.

    Meade, B. R. et al. Efficient delivery of RNAi prodrugs containing reversible charge-neutralizing phosphotriester backbone modifications. Nat. Biotechnol.32, 1256–1261 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 59.

    Singh, R. P., Oh, B. K. & Choi, J. W. Application of peptide nucleic acid towards development of nanobiosensor arrays. Bioelectrochemistry79, 153–161 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 60.

    Weitzer, S. & Martinez, J. The human RNA kinase hClp1 is active on 3’ transfer RNA exons and short interfering RNAs. Nature447, 222–226 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 61.

    Prakash, T. P. et al. Identification of metabolically stable 5’-phosphate analogs that support single-stranded siRNA activity. Nucleic Acids Res.43, 2993–3011 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 62.

    Lima, W. F. et al. Single-stranded siRNAs activate RNAi in animals. Cell150, 883–894 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 63.

    Haraszti, R. A. et al. 5-Vinylphosphonate improves tissue accumulation and efficacy of conjugated siRNAs in vivo. Nucleic Acids Res.45, 7581–7592 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 64.

    Parmar, R. et al. 5’-(E)-vinylphosphonate: a stable phosphate mimic can improve the RNAi activity of siRNA-GalNAc conjugates. Chembiochem.17, 985–989 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 65.

    Elkayam, E. et al. siRNA carrying an (E)-vinylphosphonate moiety at the 5 end of the guide strand augments gene silencing by enhanced binding to human Argonaute-2. Nucleic Acids Res.45, 3528–3536 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 66.

    Shen, X. & Corey, D. R. Chemistry, mechanism and clinical status of antisense oligonucleotides and duplex RNAs. Nucleic Acids Res.46, 1584–1600 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 67.

    Monia, B. P. et al. Evaluation of 2” modified oligonucleotides containing 2’-deoxy gaps as antisense inhibitors of gene expression. J. Biol. Chem.268, 14514–14522 (1993).

    CAS 
    PubMed 

    Google Scholar
     

  • 68.

    Hideo Inoue, Y. H., Hnura, A., Iwai, S., Miura, K. & Ohtsuka, E. Synthesis and hybridiztion studies on two complementary nona(2’-O-methyl)ribonucleotides. Nucleic Acids Res.15, 6131–6148 (1987).


    Google Scholar
     

  • 69.

    Fucini, R. V. et al. Adenosine modification may be preferred for reducing siRNA immune stimulation. Nucleic Acid Ther.22, 205–210 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 70.

    Ostergaard, M. E. et al. Fluorinated nucleotide modifications modulate allele selectivity of SNP-targeting antisense oligonucleotides. Mol. Ther. Nucleic Acids7, 20–30 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 71.

    Dowler, T. et al. Improvements in siRNA properties mediated by 2’-deoxy-2’-fluoro-beta-d-arabinonucleic acid (FANA). Nucleic Acids Res.34, 1669–1675 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 72.

    Kenski, D. M. et al. siRNA-optimized modifications for enhanced in vivo activity. Mol. Ther. Nucleic Acids1, e5 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 73.

    Christensen, U., Jacobsen, N., Rajwanshi, V. K., Wengel, J. & Koch, T. Stopped-flow kinetics of locked nucleic acid (LNA)–oligonucleotide duplex formation: studies of LNA–DNA and DNA–DNA interactions. Biochem. J.354, 481–484 (2001).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 74.

    Koji Morita, C. H. et al. 2’-O,4’-C-ethylene-bridged nucleic acids (ENA) with nucleaseresistance and high affnity for RNA. Nucleic Acids Res. Suppl.1, 241–242 (2001).


    Google Scholar
     

  • 75.

    Seth, P. P. et al. Synthesis and biophysical evaluation of 2′,4′-constrained 2′O-methoxyethyl and 2′,4′-constrained 2′O-ethyl nucleic acid analogues. J. Org. Chem.75, 1569–1581 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 76.

    Leumann, R. S. A. C. J. Synthesis and thermodynamic and biophysical properties of tricyclo-DNA. 121, 3249–3255 (1999).

  • 77.

    WELLER, J. Sa. D. Morpholino antisense oligomers: design, preparation, and properties. Antisense Nucleic Acid Drug Dev.7, 187–195 (1997).

    PubMed 

    Google Scholar
     

  • 78.

    Crooke, S. T., Witztum, J. L., Bennett, C. F. & Baker, B. F. RNA-targeted therapeutics. Cell Metab.27, 714–739 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 79.

    Kariko, K. et al. Incorporation of pseudouridine into mRNA yields superior nonimmunogenic vector with increased translational capacity and biological stability. Mol. Ther.16, 1833–1840 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 80.

    Anderson, B. R. et al. Nucleoside modifications in RNA limit activation of 2’-5’-oligoadenylate synthetase and increase resistance to cleavage by RNase L. Nucleic Acids Res.39, 9329–9338 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 81.

    Kormann, M. S. et al. Expression of therapeutic proteins after delivery of chemically modified mRNA in mice. Nat. Biotechnol.29, 154–157 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 82.

    Valenzuela, R. A. et al. Base modification strategies to modulate immune stimulation by an siRNA. Chembiochem.16, 262–267 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 83.

    Phelps, K. J. et al. Click modification of RNA at adenosine: structure and reactivity of 7-ethynyl- and 7-triazolyl-8-aza-7-deazaadenosine in RNA. ACS Chem. Biol.9, 1780–1787 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 84.

    Ibarra-Soza, J. M. et al. 7-Substituted 8-aza-7-deazaadenosines for modification of the siRNA major groove. Org. Biomol. Chem.10, 6491–6497 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 85.

    Peacock, H., Fostvedt, E. & Beal, P. A. Minor-groove-modulating adenosine replacements control protein binding and RNAi activity in siRNAs. ACS Chem. Biol.5, 1115–1124 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 86.

    Wahba, A. S. et al. Phenylpyrrolocytosine as an unobtrusive base modification for monitoring activity and cellular trafficking of siRNA. ACS Chem. Biol.6, 912–919 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 87.

    Xia, J. et al. Gene silencing activity of siRNAs with a ribo-difluorotoluyl nucleotide. ACS Chem. Biol.1, 176–183 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 88.

    Zhang, J. et al. Modification of the siRNA passenger strand by 5-nitroindole dramatically reduces its off-target effects. Chembiochem.13, 1940–1945 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 89.

    Wu, S. Y. et al. Development of modified siRNA molecules incorporating 5-fluoro-2’-deoxyuridine residues to enhance cytotoxicity. Nucleic Acids Res.41, 4650–4659 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 90.

    Peacock, H., Kannan, A., Beal, P. A. & Burrows, C. J. Chemical modification of siRNA bases to probe and enhance RNA interference. J. Org. Chem.76, 7295–7300 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 91.

    Watts, J. K., Deleavey, G. F. & Damha, M. J. Chemically modified siRNA: tools and applications. Drug Discov. Today13, 842–855 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 92.

    Dar, S. A., Thakur, A., Qureshi, A. & Kumar, M. siRNAmod: a database of experimentally validated chemically modified siRNAs. Sci. Rep.6, 20031 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 93.

    Gillmore, J. D. et al. Phase 2, open-label extension (OLE) study of revusiran, an investigational RNAi therapeutic for the treatment of patients with transthyretin cardiac amyloidosis. Orphanet. J. Rare Dis.10, O21 (2015).

    PubMed Central 

    Google Scholar
     

  • 94.

    Sehgal, A. et al. An RNAi therapeutic targeting antithrombin to rebalance the coagulation system and promote hemostasis in hemophilia. Nat. Med.21, 492–497 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 95.

    Janas, M. M. et al. Impact of oligonucleotide structure, chemistry, and delivery method on in vitro cytotoxicity. Nucleic Acid Ther.27, 11–22 (2016).

  • 96.

    Foster, D. J. et al. Advanced siRNA designs further improve in vivo performance of GalNAc-siRNA conjugates. Mol. Ther.26, 708–717 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 97.

    Nair, J. K. et al. Impact of enhanced metabolic stability on pharmacokinetics and pharmacodynamics of GalNAc-siRNA conjugates. Nucleic Acids Res.45, 10969–10977 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 98.

    Janas, M. M. et al. Safety evaluation of 2’-deoxy-2’-fluoro nucleotides in GalNAc-siRNA conjugates. Nucleic Acids Res.47, 3306–3320 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 99.

    Alnylam. FDA Approves First Treatment for Inherited Rare Disease
    https://www.accessdata.fda.gov/drugsatfda_docs/label/2019/0212194s000lbl.pdf 1–11 (The U.S. Food and Drug Administration, 2019).

  • 100.

    Zheng, J. et al. Single modification at position 14 of siRNA strand abolishes its gene-silencing activity by decreasing both RISC loading and target degradation. FASEB J.27, 4017–4026 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 101.

    Turner, A. M. et al. Hepatic-targeted RNA interference provides robust and persistent knockdown of alpha-1 antitrypsin levels in ZZ patients. J. Hepatol.69, 378–384 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 102.

    Dicerna. Methods and compositions for the specific inhibition of transthyretin (TTR) by double-stranded RNA. US Pat. Trademark Off.US20190144859, 1–240 (2019).


    Google Scholar
     

  • 103.

    US. Silence nucleic acid linked to a trivalent glycoconjugate. US Pat.Trademark Off. 1–52 (2019).

  • 104.

    Wittrup, A. & Lieberman, J. Knocking down disease: a progress report on siRNA therapeutics. Nat. Rev. Genet.16, 543–552 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 105.

    Whitehead, K. A., Langer, R. & Anderson, D. G. Knocking down barriers: advances in siRNA delivery. Nat. Rev. Drug Discov.8, 129–138 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 106.

    Kanasty, R., Dorkin, J. R., Vegas, A. & Anderson, D. Delivery materials for siRNA therapeutics. Nat. Mater.12, 967–977 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 107.

    Jayaraman, M. et al. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew. Chem. Int. Ed. Engl.51, 8529–8533 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 108.

    Wolfrum, C. et al. Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nat. Biotechnol.25, 1149–1157 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 109.

    Akinc, A. et al. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol. Ther.18, 1357–1364 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 110.

    Zuckerman, J. E. & Davis, M. E. Clinical experiences with systemically administered siRNA-based therapeutics in cancer. Nat. Rev. Drug Discov.14, 843–856 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 111.

    Wartiovaara, J. et al. Nephrin strands contribute to a porous slit diaphragm scaffold as revealed by electron tomography. J. Clin. Invest.114, 1475–1483 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 112.

    Rozema, D. B. et al. Dynamic polyconjugates for targeted in vivo delivery of siRNA to hepatocytes. Proc. Natl Acad. Sci. USA104, 12982–12987 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 113.

    Stanzl, E. G., Trantow, B. M., Vargas, J. R. & Wender, P. A. Fifteen years of cell-penetrating, guanidinium-rich molecular transporters: basic science, research tools, and clinical applications. Acc. Chem. Res.46, 2944–2954 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 114.

    Zhou, J. et al. pH-sensitive nanomicelles for high-efficiency siRNA delivery in vitro and in vivo: an insight into the design of polycations with robust cytosolic release. Nano Lett.16, 6916–6923 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 115.

    Du, L. et al. The pH-triggered triblock nanocarrier enabled highly efficient siRNA delivery for cancer therapy. Theranostics7, 3432–3445 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 116.

    Hafez, I. M., Maurer, N. & Cullis, P. R. On the mechanism whereby cationic lipids promote intracellular delivery of polynucleic acids. Gene Ther.8, 1188–1196 (2001).

    CAS 
    PubMed 

    Google Scholar
     

  • 117.

    Torchilin, V. P. Recent approaches to intracellular delivery of drugs and DNA and organelle targeting. Annu. Rev. Biomed. Eng.8, 343–375 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 118.

    Semple, S. C. et al. Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol.28, 172–176 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 119.

    Zelphati, O. & Szoka, F. C. Jr. Mechanism of oligonucleotide release from cationic liposomes. Proc. Natl Acad. Sci. USA93, 11493–11498 (1996).

    CAS 
    PubMed 

    Google Scholar
     

  • 120.

    Li, J. et al. Biodegradable calcium phosphate nanoparticle with lipid coating for systemic siRNA delivery. J. Control. Release142, 416–421 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 121.

    Dominska, M. & Dykxhoorn, D. M. Breaking down the barriers: siRNA delivery and endosome escape. J. Cell Sci.123, 1183–1189 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 122.

    Wittrup, A. et al. Visualizing lipid-formulated siRNA release from endosomes and target gene knockdown. Nat. Biotechnol.33, 870–876 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 123.

    Sahay, G. et al. Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling. Nat. Biotechnol.31, 653–658 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 124.

    Qiu, C. et al. Regulating intracellular fate of siRNA by endoplasmic reticulum membrane-decorated hybrid nanoplexes. Nat. Commun.10, 2702 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 125.

    Huang, D. et al. Continuous vector-free gene transfer with a novel microfluidic chip and nanoneedle array. Curr. Drug Deliv.16, 164–170 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 126.

    Huang, H. et al. An efficient and high-throughput electroporation microchip applicable for siRNA delivery. Lab Chip.11, 163–172 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 127.

    Huang, D., Huang, Y. & Li, Z. Transdermal delivery of nucleic acid mediated by punching and electroporation. Methods Mol. Biol.2050, 101–112 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 128.

    Huang, D. et al. Efficient delivery of nucleic acid molecules into skin by combined use of microneedle roller and flexible interdigitated electroporation array. Theranostics8, 2361–2376 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 129.

    Wei, Z. et al. A pliable electroporation patch (ep-Patch) for efficient delivery of nucleic acid molecules into animal tissues with irregular surface shapes. Sci. Rep.5, 7618–7618 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 130.

    Zhao, D. et al. A flow-through cell electroporation device for rapidly and efficiently transfecting massive amounts of cells in vitro and ex vivo. Sci. Rep.6, 18469–18469 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 131.

    Wei, Z. et al. A laminar flow electroporation system for efficient DNA and siRNA delivery. Anal. Chem.83, 5881–5887 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 132.

    Demirjian, S. et al. Safety and tolerability study of an intravenously administered small interfering ribonucleic acid (siRNA) post on-pump cardiothoracic surgery in patients at risk of acute kidney injury. Kidney Int. Rep.2, 836–843 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 133.

    Thompson, J. D. et al. Toxicological and pharmacokinetic properties of chemically modified siRNAs targeting p53 RNA following intravenous administration. Nucleic Acid Ther.22, 255–264 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 134.

    Solano, E. C. et al. Toxicological and pharmacokinetic properties of QPI-1007, a chemically modified synthetic siRNA targeting caspase 2 mRNA, following intravitreal injection. Nucleic Acid Ther.24, 258–266 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 135.

    Molitoris, B. A. et al. siRNA targeted to p53 attenuates ischemic and cisplatin-induced acute kidney injury. J. Am. Soc. Nephrol.20, 1754–1764 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 136.

    Ahmed, Z. et al. Ocular neuroprotection by siRNA targeting caspase-2. Cell Death Dis.2, e173 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 137.

    Alvarez, R. et al. RNA interference-mediated silencing of the respiratory syncytial virus nucleocapsid defines a potent antiviral strategy. Antimicrob. Agents Chemother.53, 3952–3962 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 138.

    DeVincenzo, J. et al. Evaluation of the safety, tolerability and pharmacokinetics of ALN-RSV01, a novel RNAi antiviral therapeutic directed against respiratory syncytial virus (RSV). Antivir. Res.77, 225–231 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 139.

    Zamora, M. R. et al. RNA interference therapy in lung transplant patients infected with respiratory syncytial virus. Am. J. Respir. Crit. Care Med.183, 531–538 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 140.

    DeVincenzo, J. et al. A randomized, double-blind, placebo-controlled study of an RNAi-based therapy directed against respiratory syncytial virus. Proc. Natl Acad. Sci. USA107, 8800–8805 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 141.

    Gottlieb, J. et al. ALN-RSV01 for prevention of bronchiolitis obliterans syndrome after respiratory syncytial virus infection in lung transplant recipients. J. Heart Lung Transpl.35, 213–221 (2016).


    Google Scholar
     

  • 142.

    Zheng, S. et al. siRNA knockdown of RRM2 effectively suppressed pancreatic tumor growth alone or synergistically with doxorubicin. Mol. Ther. Nucleic Acids12, 805–816 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 143.

    Kim, B., Park, J.-H. & Sailor, M. J. Rekindling RNAi therapy: materials design requirements for in vivo siRNA delivery. Adv. Mater.31, e1903637–e1903637 (2019).

    PubMed 

    Google Scholar
     

  • 144.

    Weng, Y. et al. Improved nucleic acid therapy with advanced nanoscale biotechnology. Mol. Ther. Nucleic Acids19, 581–601 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 145.

    Wan, C., Allen, T. M. & Cullis, P. R. Lipid nanoparticle delivery systems for siRNA-based therapeutics. Drug Deliv. Transl. Res.4, 74–83 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 146.

    Sato, Y. et al. A pH-sensitive cationic lipid facilitates the delivery of liposomal siRNA and gene silencing activity in vitro and in vivo. J. Control. Release163, 267–276 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 147.

    Bottega, R. E. & R, M. Inhibition of protein kinase C by cationic amphiphiles. Biochemistry31, 9025–9030 (1992).

    CAS 
    PubMed 

    Google Scholar
     

  • 148.

    Morrissey, D. V. et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat. Biotechnol.23, 1002–1007 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 149.

    Maier, M. A. et al. Biodegradable lipids enabling rapidly eliminated lipid nanoparticles for systemic delivery of RNAi therapeutics. Mol. Ther.21, 1570–1578 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 150.

    El Dika, I. et al. An open-label, multicenter, phase I, dose escalation study with phase II expansion cohort to determine the safety, pharmacokinetics, and preliminary antitumor activity of intravenous TKM-080301 in subjects with advanced hepatocellular carcinoma. Oncologist24, 747–e218 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 151.

    Tabernero, J. et al. First-in-humans trial of an RNA interference therapeutic targeting VEGF and KSP in cancer patients with liver involvement. Cancer Discov.3, 406–417 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 152.

    Fitzgerald, K. et al. Effect of an RNA interference drug on the synthesis of proprotein convertase subtilisin/kexin type 9 (PCSK9) and the concentration of serum LDL cholesterol in healthy volunteers: a randomised, single-blind, placebo-controlled, phase 1 trial. Lancet383, 60–68 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 153.

    Dong, Y. et al. Lipopeptide nanoparticles for potent and selective siRNA delivery in rodents and nonhuman primates. Proc. Natl Acad. Sci. USA111, 3955–3960 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 154.

    Akinc, A. et al. A combinatorial library of lipid-like materials for delivery of RNAi therapeutics. Nat. Biotechnol.26, 561–569 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 155.

    Love, K. T. et al. Lipid-like materials for low-dose, in vivo gene silencing. Proc. Natl Acad. Sci. USA107, 1864–1869 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 156.

    Ganesh, S. et al. Direct pharmacological inhibition of beta-catenin by RNA interference in tumors of diverse origin. Mol. Cancer Ther.15, 2143–2154 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 157.

    Aleku, M. et al. Atu027, a liposomal small interfering RNA formulation targeting protein kinase N3, inhibits cancer progression. Cancer Res.68, 9788–9798 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 158.

    Mihaila, R. et al. Lipid nanoparticle purification by spin centrifugation-dialysis (SCD): a facile and high-throughput approach for small scale preparation of siRNA-lipid complexes. Int. J. Pharm.420, 118–121 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 159.

    Sato, Y. et al. Resolution of liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against a collagen-specific chaperone. Nat. Biotechnol.26, 431–442 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 160.

    Eguchi, A. et al. Liver Bid suppression for treatment of fibrosis associated with non-alcoholic steatohepatitis. J. Hepatol.64, 699–707 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 161.

    Maeda, H., Wu, J., Sawa, T., Matsumura, Y. & Hori, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J. Control. Release65, 271–284 (2000).

    CAS 
    PubMed 

    Google Scholar
     

  • 162.

    Liu, R., Li, X., Xiao, W. & Lam, K. S. Tumor-targeting peptides from combinatorial libraries. Adv. Drug Deliv. Rev.110-111, 13–37 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 163.

    Ryschich, E. et al. Transferrin receptor is a marker of malignant phenotype in human pancreatic cancer and in neuroendocrine carcinoma of the pancreas. Eur. J. Cancer40, 1418–1422 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 164.

    Prutki, M. et al. Altered iron metabolism, transferrin receptor 1 and ferritin in patients with colon cancer. Cancer Lett.238, 188–196 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 165.

    Kimura, R. H., Levin, A. M., Cochran, F. V. & Cochran, J. R. Engineered cystine knot peptides that bind αvβ3, αvβ5, and α5β1 integrins with low-nanomolar affinity. Proteins Struct. Funct. Bioinformatics77, 359–369 (2009).

    CAS 

    Google Scholar
     

  • 166.

    Gill, M. R., Falzone, N., Du, Y. & Vallis, K. A. Targeted radionuclide therapy in combined-modality regimens. Lancet Oncol.18, e414–e423 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 167.

    Cohen, Z. R. et al. Localized RNAi therapeutics of chemoresistant grade IV glioma using hyaluronan-grafted lipid-based nanoparticles. ACS Nano.9, 1581–1591 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 168.

    Mizrahy, S. et al. Tumor targeting profiling of hyaluronan-coated lipid basednanoparticles. Nanoscale6, 3742–3752 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 169.

    Eliaz, R. E. & Szoka, F. C. Jr Liposome-encapsulated doxorubicin targeted to CD44: a strategy to kill CD44-overexpressing tumor cells. Cancer Res.15, 2592–2601 (2001).


    Google Scholar
     

  • 170.

    Parker, N. et al. Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Anal. Biochem.338, 284–293 (2005).

    CAS 

    Google Scholar
     

  • 171.

    Mui, B. L. et al. Influence of polyethylene glycol lipid desorption rates on pharmacokinetics and pharmacodynamics of siRNA lipid nanoparticles. Mol. Ther. Nucleic Acids2, e139 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 172.

    Whitehead, K. A. et al. Degradable lipid nanoparticles with predictable in vivo siRNA delivery activity. Nat. Commun.5, 4277 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 173.

    Yanagi, T. et al. Lipid nanoparticle-mediated siRNA transfer against PCTAIRE1/PCTK1/Cdk16 inhibits in vivo cancer growth. Mol. Ther. Nucleic Acids5, e327 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 174.

    Ganesh, S. et al. RNAi-mediated beta-catenin inhibition promotes T cell infiltration and antitumor activity in combination with immune checkpoint blockade. Mol. Ther.26, 2567–2579 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 175.

    Schultheis, B. et al. First-in-human phase I study of the liposomal RNA interference therapeutic Atu027 in patients with advanced solid tumors. J. Clin. Oncol.32, 4141–4148 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 176.

    Fehring, V. et al. Delivery of therapeutic siRNA to the lung endothelium via novel Lipoplex formulation DACC. Mol. Ther.22, 811–820 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 177.

    Mihaila, R. et al. Modeling the kinetics of lipid-nanoparticle-mediated delivery of multiple siRNAs to evaluate the effect on competition for Ago2. Mol. Ther. Nucleic Acids16, 367–377 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 178.

    Mihaila, R. et al. Mathematical modeling: a tool for optimization of lipid nanoparticle-mediated delivery of siRNA. Mol. Ther. Nucleic Acids7, 246–255 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 179.

    Zimmermann, T. S. et al. RNAi-mediated gene silencing in non-human primates. Nature441, 111–114 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 180.

    Suhr, O. B. et al. Efficacy and safety of patisiran for familial amyloidotic polyneuropathy: a phase II multi-dose study. Orphanet. J. Rare Dis.10, 109 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 181.

    Wu, S. Y., Lopez-Berestein, G., Calin, G. A. & Sood, A. K. RNAi therapies: drugging the undruggable. Sci. Transl. Med.6, 240ps247 (2014).


    Google Scholar
     

  • 182.

    Liu, X. Targeting polo-like kinases: a promising therapeutic approach for cancer treatment. Transl. Oncol.8, 185–195 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 183.

    Beg, M. S. et al. Phase I study of MRX34, a liposomal miR-34a mimic, administered twice weekly in patients with advanced solid tumors. Invest. N. Drugs35, 180–188 (2017).

    CAS 

    Google Scholar
     

  • 184.

    Strumberg, D. et al. Phase I clinical development of Atu027, a siRNA formulation targeting PKN3 in patients with advanced solid tumors. Int J. Clin. Pharm. Ther.50, 76–78 (2012).

    CAS 

    Google Scholar
     

  • 185.

    Streinu-Cercel, A. et al. A phase 2a study evaluating the multi-dose activity of ARB-1467 in HBeAg positive and negative virally suppressed subjects with hepatitis B. J. Hepatol.66, S688–S689 (2017).


    Google Scholar
     

  • 186.

    Thi, E. P. et al. ARB-1740, a RNA interference therapeutic for chronic hepatitis B infection. ACS Infect. Dis.5, 725–737 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 187.

    Ye, X. et al. Hepatitis B virus therapeutic agent ARB-1740 has inhibitory effect on hepatitis delta virus in a new dually-infected humanized mouse model. ACS Infect. Dis.5, 738–749 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 188.

    Lee, A. C. H. et al. Function and drug combination studies in cell culture models for AB-729, a subcutaneously administered siRNA investigational agent for chronic hepatitis B infection. J. Hepatol.70, E471–E471 (2019).


    Google Scholar
     

  • 189.

    Wong, S. C. et al. Co-injection of a targeted, reversibly masked endosomolytic polymer dramatically improves the efficacy of cholesterol-conjugated small interfering RNAs in vivo. Nucleic Acid Ther.22, 380–390 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 190.

    Wooddell, C. I. et al. Hepatocyte-targeted RNAi therapeutics for the treatment of chronic hepatitis B virus infection. Mol. Ther.21, 973–985 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 191.

    Sebestyen, M. G. et al. Targeted in vivo delivery of siRNA and an endosome-releasing agent to hepatocytes. Methods Mol. Biol.1218, 163–186 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 192.

    Rozema, D. B. et al. Protease-triggered siRNA delivery vehicles. J. Control. Release209, 57–66 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 193.

    Jin, L. et al. Current progress in gene delivery technology based on chemical methods and nano-carriers. Theranostics4, 240–255 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 194.

    Wooddell, C. I. et al. RNAi-based treatment of chronically infected patients and chimpanzees reveals that integrated hepatitis B virus DNA is a source of HBsAg. Sci. Transl. Med. 9, eaan0241 (2017).

  • 195.

    Gish, R. G. et al. Synthetic RNAi triggers and their use in chronic hepatitis B therapies with curative intent. Antivir. Res.121, 97–108 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 196.

    Gane, E. et al. A phase 1 study to evaluate safety and tolerability of escalating single doses of the hepatitis B virus RNA interference drug ARC-521 in a healthy volunteer population. J. Hepatol.66, S265–S265 (2017).


    Google Scholar
     

  • 197.

    Schwabe, C. et al. A phase 1 single and multiple dose-escalating study to evaluate the safety, tolerability, pharmacokinetics and effect of ARO-AAT on serum alpha-1 antitrypsin levels in normal adult volunteers. Hepatology68, 1451A–1452A (2018).


    Google Scholar
     

  • 198.

    Gane, E. J. et al. First results with RNA interference (RNAi) in chronic hepatitis B (CHB) using ARO-HBV. Hepatology68, 1463A–1463A (2018).


    Google Scholar
     

  • 199.

    Khorev, O. et al. Trivalent, Gal/GalNAc-containing ligands designed for the asialoglycoprotein receptor. Bioorg. Med. Chem.16, 5216–5231 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 200.

    Nair, J. K. et al. Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J. Am. Chem. Soc.136, 16958–16961 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 201.

    Dicerna. Ligand-modified double-stranded nucleic acids. World Intellect. Prop. Organ.WO2016100401A1, 1–426 (2016).


    Google Scholar
     

  • 202.

    Arrowhead. Targeting ligands. World Intellect. Prop. Organ.WO2018044350, 1–254 (2018).


    Google Scholar
     

  • 203.

    Craig, K., Abrams, M. & Amiji, M. Recent preclinical and clinical advances in oligonucleotide conjugates. Expert Opin. Drug Deliv.15, 629–640 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 204.

    Lee, A. C. H. et al. Durable inhibition of hepatitis B virus replication and antigenemia using a subcutaneously administered siRNA agent in preclinical models. J. Hepatol.68, S18–S18 (2018).


    Google Scholar
     

  • 205.

    Silence. Advanced GalNAc-siRNA Platform and Its Therapeutic Applications
    https://www.silence-therapeutics.com/media/1799/2018-boston-tides.pdf 1–36 (Silence, 2018).

  • 206.

    Prakash, T. P. et al. Targeted delivery of antisense oligonucleotides to hepatocytes using triantennary N-acetyl galactosamine improves potency 10-fold in mice. Nucleic Acids Res.42, 8796–8807 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 207.

    Apponi, L. et al. Stereochemistry enhances pharmacological properties of APOC3 antisense oligonucleotides. J. Hepatol.68, S137–S137 (2018).


    Google Scholar
     

  • 208.

    van der Ree, M. H. et al. Safety, tolerability, and antiviral effect of RG-101 in patients with chronic hepatitis C: a phase 1B, double-blind, randomised controlled trial. Lancet389, 709–717 (2017).

    PubMed 

    Google Scholar
     

  • 209.

    SuzhouRiboLifeScience. Compound, conjugates and use and kit thereof. World Intellect. Prop. Organ.WO2019128611, 1–271 (2019).


    Google Scholar
     

  • 210.

    Sanhueza, C. A. et al. Efficient Liver targeting by polyvalent display of a compact ligand for the asialoglycoprotein receptor. J. Am. Chem. Soc.139, 3528–3536 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 211.

    WaveLifeSciences. Oligonucleotide compositions and methods of use thereof. World Intellect. Prop. Organ.WO2018223073, 1–773 (2018).


    Google Scholar
     

  • 212.

    Pasi, K. J. et al. A subcutaneously administered investigational RNAi therapeutic, fitusiran (ALN-AT3), targeting antithrombin for treatment of hemophilia: interim results in patients with hemophilia A or B. Haemophilia22, 76–76 (2016).


    Google Scholar
     

  • 213.

    Pasi, K. J. et al. Targeting of antithrombin in hemophilia A or B with RNAi therapy. N. Engl. J. Med.377, 819–828 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 214.

    Strat, A. L., Ghiciuc, C. M., Lupusoru, C. E. & Mitu, F. New class of drugs: therapeutic RNAi inhibition of PCSK9 as a specific LDL-c lowering therapy. Rev. Med Chir. Soc. Med. Nat. Iasi120, 228–232 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 215.

    Fitzgerald, K. et al. ALN-PCSsc, an RNAi investigational agent that inhibits PCSK9 with potential for effective quarterly or possibly bi-annual dosing: results of single-blind, placebo-controlled, phase 1 single-ascending dose (SAD), and multi-dose (MD) trial in adults with elevated LDL-C, on and off statins. Circulation132, 2275–2275 (2015).


    Google Scholar
     

  • 216.

    Hassan, M. FOURIER & PCSK9 RNAi: towards enhancing durability and efficacy of PCSK9 inhibitors. Glob. Cardiol. Sci. Pr.2017, 13 (2017).


    Google Scholar
     

  • 217.

    Alnylam. Phase 1 Study of ALN-TTRsc02, a Subcutaneously Administered Investigational RNAi Therapeutic for the Treatment of Transthyretin-Mediated Amyloidosis
    http://www.alnylam.com/wp-content/uploads/2018/03/10.-TTR-SCO2_FINAL.pdf (2018).

  • 218.

    Dindo, M. et al. Molecular basis of primary hyperoxaluria: clues to innovative treatments. Urolithiasis47, 67–78 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 219.

    Dicerna. Corporate Overview. Jefferies Global Healthcare Conference 2019. http://investors.dicerna.com/static-files/6ca8fc33-2696-459a-b8ca-a8a39ec68903 1–22 (2019).

  • 220.

    Zorde Khvalevsky, E. et al. Mutant KRAS is a druggable target for pancreatic cancer. Proc. Natl Acad. Sci. USA110, 20723–20728 (2013).

    PubMed 

    Google Scholar
     

  • 221.

    Amotz Shemi, E. Z. K. et al. Multistep, effective drug distribution within solid tumors. Oncotarget7, 39564–39577 (2015).


    Google Scholar
     

  • 222.

    Ramot, Y. et al. Preclinical safety evaluation in rats of a polymeric matrix containing an siRNA drug used as a local and prolonged delivery system for pancreatic cancer therapy. Toxicol. Pathol.44, 856–865 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 223.

    Golan, T. et al. RNAi therapy targeting KRAS in combination with chemotherapy for locally advanced pancreatic cancer patients. Oncotarget6, 24560–24570 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 224.

    Shemi, A. & Khvalevsky, Z. RNA interference compositions targeting heat shock protein 90 and methods of use thereof. US Pat. Trademark Off.US20170283803A1, 1–20 (2017).


    Google Scholar
     

  • 225.

    Takemoto, H. & Nishiyama, N. Functional polymer-based siRNA delivery carrier that recognizes site-specific biosignals. J. Control. Release267, 90–99 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 226.

    Guo, S. et al. Ternary complexes of amphiphilic polycaprolactone-graft-poly (N,N-dimethylaminoethyl methacrylate), DNA and polyglutamic acid-graft-poly(ethylene glycol) for gene delivery. Biomaterials32, 4283–4292 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 227.

    Lin, D. et al. Structural contributions of blocked or grafted poly(2-dimethylaminoethyl methacrylate) on PEGylated polycaprolactone nanoparticles in siRNA delivery. Biomaterials32, 8730–8742 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 228.

    Huang, Y. et al. Binary and ternary complexes based on polycaprolactone-graft-poly (N, N-dimethylaminoethyl methacrylate) for targeted siRNA delivery. Biomaterials33, 4653–4664 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 229.

    Lin, D. et al. Intracellular cleavable poly(2-dimethylaminoethyl methacrylate) functionalized mesoporous silica nanoparticles for efficient siRNA delivery in vitro and in vivo. Nanoscale5, 4291–4301 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 230.

    Han, S. et al. Effects of hydrophobic core components in amphiphilic PDMAEMA nanoparticles on siRNA delivery. Biomaterials48, 45–55 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 231.

    Zhang, T. et al. Fluorinated oligoethylenimine nanoassemblies for efficient siRNA-mediated gene silencing in serum-containing media by effective endosomal escape. Nano Lett.18, 6301–6311 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 232.

    Suma, T. et al. Enhanced stability and gene silencing ability of siRNA-loaded polyion complexes formulated from polyaspartamide derivatives with a repetitive array of amino groups in the side chain. Biomaterials33, 2770–2779 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 233.

    Liu, Y. et al. Charge conversional biomimetic nanocomplexes as a multifunctional platform for boosting orthotopic glioblastoma RNAi therapy. Nano Lett.20, 1637–1646 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 234.

    Davis, M. E. The first targeted delivery of siRNA in humans via a self-assembling, cyclodextrin polymer-based nanoparticle: from concept to clinic. Mol. Pharm.6, 659–668 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 235.

    Davis, M. E. et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature464, 1067–1070 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 236.

    van Zandwijk, N. et al. Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: a first-in-man, phase 1, open-label, dose-escalation study. Lancet Oncol.18, 1386–1396 (2017).

    PubMed 

    Google Scholar
     

  • 237.

    Zhou, J. et al. Simultaneous silencing of TGF-beta1 and COX-2 reduces human skin hypertrophic scar through activation of fibroblast apoptosis. Oncotarget8, 80651–80665 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 238.

    Kamerkar, S. et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature546, 498–503 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 239.

    Lu, M. & Huang, Y. Bioinspired exosome-like therapeutics and delivery nanoplatforms. Biomaterials242, 119925 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 240.

    Huang, Y. et al. Systemic and tumor-targeted delivery of siRNA by cyclic NGR and isoDGR motif-containing peptides. Biomater. Sci.4, 494–510 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 241.

    Huang, Y. et al. Systemic administration of siRNA via cRGD-containing peptide. Sci. Rep.5, 12458 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 242.

    Kim, S. S. et al. Targeted delivery of siRNA to macrophages for anti-inflammatory treatment. Mol. Ther.18, 993–1001 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 243.

    Kumar, P. et al. Transvascular delivery of small interfering RNA to the central nervous system. Nature448, 39–43 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 244.

    Dong, Y. et al. A dual targeting dendrimer-mediated siRNA delivery system for effective gene silencing in cancer therapy. J. Am. Chem. Soc.140, 16264–16274 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 245.

    Zhou, J. et al. Systemic administration of combinatorial dsiRNAs via nanoparticles efficiently suppresses HIV-1 infection in humanized mice. Mol. Ther.19, 2228–2238 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 246.

    Liu, X. et al. Adaptive amphiphilic dendrimer-based nanoassemblies as robust and versatile siRNA delivery systems. Angew. Chem. Int. Ed. Engl.53, 11822–11827 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 247.

    Cui, D. et al. Regression of gastric cancer by systemic injection of RNA nanoparticles carrying both ligand and siRNA. Sci. Rep.5, 10726 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 248.

    Lee, T. J. et al. RNA nanoparticle as a vector for targeted siRNA delivery into glioblastoma mouse model. Oncotarget6, 14766–14776 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 249.

    Stewart, J. M. et al. Programmable RNA microstructures for coordinated delivery of siRNAs. Nanoscale8, 17542–17550 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 250.

    Xu, Y. et al. Specific delivery of delta-5-desaturase siRNA via RNA nanoparticles supplemented with dihomo-gamma-linolenic acid for colon cancer suppression. Redox Biol.21, 101085 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 251.

    Pi, F. et al. Nanoparticle orientation to control RNA loading and ligand display on extracellular vesicles for cancer regression. Nat. Nanotechnol.13, 82–89 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 252.

    Smith, J. A. et al. RNA nanotherapeutics for the amelioration of astroglial reactivity. Mol. Ther. Nucleic Acids10, 103–121 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 253.

    Xu, C. et al. Favorable biodistribution, specific targeting and conditional endosomal escape of RNA nanoparticles in cancer therapy. Cancer Lett.414, 57–70 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 254.

    Jasinski, D., Haque, F., Binzel, D. W. & Guo, P. Advancement of the emerging field of RNA nanotechnology. ACS Nano.11, 1142–1164 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 255.

    Guo, S. et al. Enhanced gene delivery and siRNA silencing by gold nanoparticles coated with charge-reversal polyelectrolyte. ACS Nano.4, 5505–5511 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 256.

    Alnylam. Extrahepatic delivery. World Intellect. Prop. Organ.WO2019217459A1, 1–271 (2019).


    Google Scholar
     

  • 257.

    Biscans, A., Coles, A., Echeverria, D. & Khvorova, A. The valency of fatty acid conjugates impacts siRNA pharmacokinetics, distribution, and efficacy in vivo. J. Control. Release302, 116–125 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 258.

    Biscans, A. et al. Diverse lipid conjugates for functional extra-hepatic siRNA delivery in vivo. Nucleic Acids Res.47, 1082–1096 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 259.

    Nikan, M. et al. Synthesis and evaluation of parenchymal retention and efficacy of a metabolically stable O-phosphocholine-N-docosahexaenoyl-l-serine siRNA conjugate in mouse brain. Bioconjug. Chem.28, 1758–1766 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 260.

    Osborn, M. F. & Khvorova, A. Improving siRNA delivery in vivo through lipid conjugation. Nucleic Acid Ther.28, 128–136 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 261.

    Ostergaard, M. E. et al. Conjugation of hydrophobic moieties enhances potency of antisense oligonucleotides in the muscle of rodents and non-human primates. Nucleic Acids Res.47, 6045–6058 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 262.

    Prakash, T. P. et al. Fatty acid conjugation enhances potency of antisense oligonucleotides in muscle. Nucleic Acids Res.47, 6029–6044 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 263.

    Wang, S. et al. Lipid conjugates enhance endosomal release of antisense oligonucleotides into cells. Nucleic Acid Ther.29, 245–255 (2019).

  • 264.

    Schluep, T. et al. Safety, tolerability, and pharmacokinetics of ARC-520 injection, an RNA interference-based therapeutic for the treatment of chronic hepatitis B Virus Infection, in healthy volunteers. Clin. Pharm. Drug Dev.6, 350–362 (2017).

    CAS 

    Google Scholar
     

  • 265.

    Dicerna Corporate Presentation February 2020. (2020).

  • 266.

    Arrowhead. ARO-AAT for Liver Disease in Alpha-1 Antitrypsin Deficiency: Clinical Development Progress (Arrowhead, 2019).

  • 267.

    Liebow, A. et al. An investigational RNAi therapeutic targeting glycolate oxidase reduces oxalate production in models of primary hyperoxaluria. J. Am. Soc. Nephrol.28, 494–503 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 268.

    Hill, A. et al. A subcutaneously administered investigational RNAi therapeutic (ALN-CC5) targeting complement C5 for treatment of PNH and complement-mediated diseases: preliminary phase 1/2 study results in patients with PNH. Blood128, 5 (2016).


    Google Scholar
     

  • 269.

    Huang, Y. Preclinical and clinical advances of GalNAc-decorated nucleic acid therapeutics. Mol. Ther. Nucleic Acids6, 116–132 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 270.

    Huang, Y. Y. & Liang, Z. C. Asialoglycoprotein receptor and its application in liver-targeted drug delivery. Prog. Biochem. Biophys.42, 501–510 (2015).

    CAS 

    Google Scholar
     

  • 271.

    Haas, M. J. Alnylam interrupts preeclampsia. SciBX: Science-Business eXchange. 7, https://doi.org/10.1038/scibx.2014.1170 (2014).

  • 272.

    Wooddell, C. et al. ARO-AAT, a subcutaneous RNAi-based therapeutic for alpha-1 antitrypsin-related liver disease, demonstrates liver exposure-response and efficacy in preclinical studies. J. Hepatol.68, S82–S82 (2018).


    Google Scholar
     

  • 273.

    Wooddell, C. et al. Development of subcutaneously administered RNAi therapeutic ARO-HBV for chronic hepatitis B virus infection. J. Hepatol.68, S18–S19 (2018).


    Google Scholar
     

  • 274.

    Butler, A. A. et al. Fructose-induced hypertriglyceridemia in rhesus macaques is attenuated with fish oil or ApoC3 RNA interference. J. Lipid Res.60, 805–818 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 275.

    Hamilton, J. Overcoming the challenges of RNAi-based therapy: an interview with James Hamilton. Ther. Deliv.9, 511–513 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 276.

    Melquist, S. et al. Targeting apolipoprotein(a) with a novel RNAi delivery platform as a prophylactic treatment to reduce risk of cardiovascular events in individuals with elevated lipoprotein (a). Circulation134, 7 (2016).


    Google Scholar
     

  • 277.

    Borrelli, M. J., Youssef, A., Boffa, M. B. & Koschinsky, M. L. New Frontiers in Lp(a)-Targeted Therapies. Trends Pharm. Sci.40, 212–225 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 278.

    Soule, B. et al. Safety, tolerability, and pharmacokinetics of BMS-986263/ND-L02-s0201, a novel targeted lipid nanoparticle delivering HSP47 siRNA, in healthy participants: A randomised, placebo-controlled, double-blind, phase 1 study. J. Hepatol.68, S112–S112 (2018).


    Google Scholar
     

  • 279.

    Kimchi-Sarfaty, C. et al. In vitro-packaged SV40 pseudovirions as highly efficient vectors for gene transfer. Hum. Gene Ther.13, 299–310 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • 280.

    Nishimura, M. et al. Therapeutic synergy between microRNA and siRNA in ovarian cancer treatment. Cancer Discov.3, 1302–1315 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 281.

    Landen, C. N. Jr. et al. Therapeutic EphA2 gene targeting in vivo using neutral liposomal small interfering RNA delivery. Cancer Res.65, 6910–6918 (2005).

    CAS 
    PubMed 

    Google Scholar
     

  • 282.

    Duxbury, M. S. et al. EphA2: a determinant of malignant cellular behavior and a potential therapeutic target in pancreatic adenocarcinoma. Oncogene23, 1448–1456 (2004).

    CAS 
    PubMed 

    Google Scholar
     

  • 283.

    Jensen, S. A. et al. Spherical nucleic acid nanoparticle conjugates as an RNAi-based therapy for glioblastoma. Sci. Transl. Med.5, 209ra152 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 284.

    Hwang, J. et al. Development of cell-penetrating asymmetric interfering RNA targeting connective tissue growth factor. J. Invest. Dermatol.136, 2305–2313 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 285.

    Leachman, S. A. et al. First-in-human mutation-targeted siRNA phase Ib trial of an inherited skin disorder. Mol. Ther.18, 442–446 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 286.

    Lee, D. U., Huang, W., Rittenhouse, K. D. & Jessen, B. Retina expression and cross-species validation of gene silencing by PF-655, a small interfering RNA against RTP801 for the treatment of ocular disease. J. Ocul. Pharmacol. Ther.28, 222–230 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 287.

    Hobo, W. et al. siRNA silencing of PD-L1 and PD-L2 on dendritic cells augments expansion and function of minor histocompatibility antigen-specific CD8+ T cells. Blood116, 4501–4511 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 288.

    van der Waart, A. B. et al. siRNA silencing of PD-1 ligands on dendritic cell vaccines boosts the expansion of minor histocompatibility antigen-specific CD8(+) T cells in NOD/SCID/IL2Rg(null) mice. Cancer Immunol. Immunother.64, 645–654 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 289.

    Libertine, L. et al. RXI-109 treatment for proliferative vitreoretinopathy (PVR) and other ocular disorders. Invest Ophth Vis. Sci.55, 3 (2014).


    Google Scholar
     

  • 290.

    Schultheis, B. et al. Combination therapy with gemcitabine and Atu027 in patients with locally advanced or metastatic pancreatic adenocarcinoma—a Phase Ib/IIa study. Oncol. Res. Treat.41, 64 (2018).


    Google Scholar
     

  • 291.

    Golan, T. et al. A phase I trial of a local delivery of siRNA against k-ras in combination with chemotherapy for locally advanced pancreatic adenocarcinoma. J. Clin. Oncol.31, 1 (2013).


    Google Scholar
     

  • 292.

    Moreno-Montañés, J., Bleau, A.-M. & Jimenez, A. I. Tivanisiran, a novel siRNA for the treatment of dry eye disease. Expert Opin. Investig. Drugs27, 421–426 (2018).

    PubMed 

    Google Scholar
     

  • 293.

    Beatriz, J. et al. Safety and efficacy clinical trials for SYL1001, a novel short interfering RNA for the treatment of dry eye disease. Invest. Ophthalmol. Vis. Sci.57, 6447–6454 (2016).


    Google Scholar
     

  • 294.

    Moreno-Montanes, J. et al. Phase I clinical trial of SYL040012, a small interfering RNA targeting beta-adrenergic receptor 2, for lowering intraocular pressure. Mol. Ther.22, 226–232 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 295.

    Martinez, T. et al. In vitro and in vivo efficacy of SYL040012, a novel siRNA compound for treatment of glaucoma. Mol. Ther.22, 81–91 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 296.

    Triozzi, P. et al. Phase I clinical trial of adoptive cellular immunotherapy with APN401 in patients with solid tumors. J. Immunother. Cancer3, P175 (2015).

    PubMed Central 

    Google Scholar
     

  • 297.

    Loibner, H. et al. Adoptive cellular immunotherapy with APN401, autologous cbl-b silenced peripheral blood mononuclear cells: data from a phase I study in patients with solid tumors. J. Clin. Oncol.36, 1 (2018).


    Google Scholar
     

  • 298.

    Seto, A. G. et al. Cobomarsen, an oligonucleotide inhibitor of miR-155, co-ordinately regulates multiple survival pathways to reduce cellular proliferation and survival in cutaneous T-cell lymphoma. Br. J. Haematol.183, 428–444 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 299.

    Gallant-Behm, C. L. et al. A microRNA-29 mimic (Remlarsen) represses extracellular matrix expression and fibroplasia in the skin. J. Invest. Dermatol.139, 1073–1081 (2019).

    CAS 
    PubMed 

    Google Scholar
     

  • 300.

    Montgomery, R. L. et al. MicroRNA mimicry blocks pulmonary fibrosis. EMBO Mol. Med.6, 1347–1356 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 301.

    Gallant-Behm, C. L. et al. A synthetic microRNA-92a inhibitor (MRG-110) accelerates angiogenesis and wound healing in diabetic and nondiabetic wounds. Wound Repair Regen.26, 311–323 (2018).

    PubMed 

    Google Scholar
     

  • 302.

    Javanbakht, H. et al. Liver-targeted anti-HBV single-stranded oligonucleotides with locked nucleic acid potently reduce HBV gene expression in vivo. Mol. Ther. Nucleic Acids11, 441–454 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    3 thoughts on “Therapeutic siRNA: state of the art”
    1. great points altogether, you simply gained a new reader. What would you suggest about your post that you made some days ago? Any positive?

    2. A powerful share, I just given this onto a colleague who was doing a bit analysis on this. And he in fact bought me breakfast because I discovered it for him.. smile. So let me reword that: Thnx for the treat! But yeah Thnkx for spending the time to discuss this, I feel strongly about it and love studying extra on this topic. If potential, as you become experience, would you thoughts updating your blog with extra details? It’s highly useful for me. Large thumb up for this blog publish!

    3. See the most regnant GTA 5 money Beguiler manage ride on this website to make untrammelled assets of GTA 5 money for loose with warranted success! Now generate disentangled GTA 5 money in seconds.

    Leave a Reply

    Your email address will not be published. Required fields are marked *