CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Mills, K. et al. Fisheries management in a changing climate: lessons from the 2012 ocean heat wave in the Northwest Atlantic. Oceanography 26, 191–195 (2013).


    Google Scholar
     

  • 2.

    Wernberg, T. et al. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Chang. 3, 78–82 (2013).

    ADS 

    Google Scholar
     

  • 3.

    Thomson, J. A. et al. Extreme temperatures, foundation species, and abrupt ecosystem change: an example from an iconic seagrass ecosystem. Glob. Change Biol. 21, 1463–1474 (2015).

    ADS 

    Google Scholar
     

  • 4.

    Cavole, L. M. et al. Biological impacts of the 2013–2015 warm-water anomaly in the Northeast Pacific: winners, losers, and the future. Oceanography 29, 273–285 (2016).


    Google Scholar
     

  • 5.

    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).

    ADS 
    CAS 

    Google Scholar
     

  • 6.

    Babcock, R. C. et al. Severe continental-scale impacts of climate change are happening now: extreme climate events impact marine habitat forming communities along 45% of Australia’s coast. Front. Mar. Sci. 6, 411 (2019); corrigendum 6, 558 (2019).


    Google Scholar
     

  • 7.

    Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Chang. 9, 306–312 (2019).

    ADS 

    Google Scholar
     

  • 8.

    Oliver, E. C. et al. The unprecedented 2015/16 Tasman Sea marine heatwave. Nat. Commun. 8, 16101 (2017).

    ADS 
    Article 

    Google Scholar
     

  • 9.

    Oliver, E. C. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1324 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).

    ADS 
    PubMed 

    Google Scholar
     

  • 11.

    Holbrook, N. J. et al. A global assessment of marine heatwaves and their drivers. Nat. Commun. 10, 2624 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Ñiquen, M. & Bouchon, M. Impact of El Niño events on pelagic fisheries in Peruvian waters. Deep Sea Res. Part II 51, 563–574 (2004).

    ADS 

    Google Scholar
     

  • 13.

    Walker, H. J. et al. Unusual occurrences of fishes in the southern California current system during the warm water period of 2014–2018. Estuar. Coast. Shelf Sci. 236, 106634 (2020).


    Google Scholar
     

  • 14.

    Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308, 1912–1915 (2005).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Sorte, C. J., Williams, S. L. & Carlton, J. T. Marine range shifts and species introductions: comparative spread rates and community impacts. Glob. Ecol. Biogeogr. 19, 303–316 (2010).


    Google Scholar
     

  • 16.

    Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L. & Levin, S. A. Marine taxa track local climate velocities. Science 341, 1239–1242 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Poloczanska, E. S. et al. Global imprint of climate change on marine life. Nat. Clim. Chang. 3, 919–925 (2013).

    ADS 

    Google Scholar
     

  • 18.

    Burrows, M. T. et al. The pace of shifting climate in marine and terrestrial ecosystems. Science 334, 652–655 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    Pearce, A. F. & Feng, M. The rise and fall of the “marine heat wave” off Western Australia during the summer of 2010/2011. J. Mar. Syst. 111–112, 139–156 (2013).


    Google Scholar
     

  • 20.

    Bond, N. A., Cronin, M. F., Freeland, H. & Mantua, N. Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys. Res. Lett. 42, 3414–3420 (2015).

    ADS 

    Google Scholar
     

  • 21.

    Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).

    ADS 

    Google Scholar
     

  • 22.

    Perkins, S. E. & Alexander, L. V. On the measurement of heat waves. J. Clim. 26, 4500–4517 (2013).

    ADS 

    Google Scholar
     

  • 23.

    Brito-Morales, I. et al. Climate velocity can inform conservation in a warming world. Trends Ecol. Evol. 33, 441–457 (2018).


    Google Scholar
     

  • 24.

    Di Lorenzo, E. & Mantua, N. Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat. Clim. Chang. 6, 1042–1047 (2016).

    ADS 

    Google Scholar
     

  • 25.

    Schwing, F. B. et al. Delayed coastal upwelling along the US West Coast in 2005: a historical perspective. Geophys. Res. Lett. 33, L22S01 (2006).


    Google Scholar
     

  • 26.

    Brodeur, R. D. et al. Anomalous pelagic nekton abundance, distribution, and apparent recruitment in the northern California Current in 2004 and 2005. Geophys. Res. Lett. 33, L22S08 (2006).


    Google Scholar
     

  • 27.

    Chen, K., Gawarkiewicz, G. G., Lentz, S. J. & Bane, J. M. Diagnosing the warming of the northeastern US coastal ocean in 2012: a linkage between the atmospheric jet stream variability and ocean response. J. Geophys. Res. 119, 218–227 (2014).

    ADS 

    Google Scholar
     

  • 28.

    Lea, R. N. & Rosenblatt, R. H. Observations on fishes associated with the 1997–98 El Niño off California. Cal. Coop. Ocean. Fish. 41, 117–129 (2000).


    Google Scholar
     

  • 29.

    Pearcy, W. G. Marine nekton off Oregon and the 1997–98 El Niño. Prog. Oceanogr. 54, 399–403 (2002).

    ADS 

    Google Scholar
     

  • 30.

    Loarie, S. R. et al. The velocity of climate change. Nature 462, 1052–1055 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • 31.

    Jacox, M. G. Marine heatwaves in a changing climate. Nature 571, 485–487 (2019).

    ADS 
    CAS 

    Google Scholar
     

  • 32.

    Seager, R. et al. Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse gases. Nat. Clim. Chang. 9, 517–522 (2019).

    ADS 

    Google Scholar
     

  • 33.

    Link, J. S., Nye, J. A. & Hare, J. A. Guidelines for incorporating fish distribution shifts into a stock assessment context. Fish Fish. 12, 461–469 (2011).


    Google Scholar
     

  • 34.

    Rogers, L. A. et al. Shifting habitats expose fishing communities to risk under climate change. Nat. Clim. Chang. 9, 512–516 (2019).

    ADS 

    Google Scholar
     

  • 35.

    Pinsky, M. L. & Fogarty, M. Lagged social-ecological responses to climate and range shifts in fisheries. Clim. Change 115, 883–891 (2012).

    ADS 

    Google Scholar
     

  • 36.

    Briscoe, D. K. et al. Ecological bridges and barriers in pelagic ecosystems. Deep Sea Res. Part II 140, 182–192 (2017).


    Google Scholar
     

  • 37.

    Sunday, J. M. et al. Species traits and climate velocity explain geographic range shifts in an ocean-warming hotspot. Ecol. Lett. 18, 944–953 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Reynolds, R. W. et al. Daily high-resolution-blended analyses for sea surface temperature. J. Clim. 20, 5473–5496 (2007).

    ADS 

    Google Scholar
     

  • 39.

    Banzon, V., Smith, T. M., Chin, T. M., Liu, C. & Hankins, W. A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring, modeling and environmental studies. Earth Syst. Sci. Data 8, 165–176 (2016).

    ADS 

    Google Scholar
     

  • 40.

    Alexander, M. A. et al. Projected sea surface temperatures over the 21st century: changes in the mean, variability and extremes for large marine ecosystem regions of Northern Oceans. Elementa Sci. Anthrop. 6, 9 (2018).


    Google Scholar
     

  • 41.

    Scannell, H. A., Pershing, A. J., Alexander, M. A., Thomas, A. C. & Mills, K. E. Frequency of marine heatwaves in the North Atlantic and North Pacific since 1950. Geophys. Res. Lett. 43, 2069–2076 (2016).

    ADS 

    Google Scholar
     

  • 42.

    Hu, Z. Z., Kumar, A., Jha, B., Zhu, J. & Huang, B. Persistence and predictions of the remarkable warm anomaly in the northeastern Pacific Ocean during 2014–16. J. Clim. 30, 689–702 (2017).

    ADS 

    Google Scholar
     

  • 43.

    Doi, T., Behera, S. K. & Yamagata, T. Merits of a 108-member ensemble system in ENSO and IOD predictions. J. Clim. 32, 957–972 (2019).

    ADS 

    Google Scholar
     

  • 44.

    Jacox, M., Tommasi, D., Alexander, M., Hervieux, G. & Stock, C. Predicting the evolution of the 2014-16 California Current System marine heatwave from an ensemble of coupled global climate forecasts. Front. Mar. Sci. 6, 497 (2019).


    Google Scholar
     

  • 45.

    Romanou, A., Rossow, W. B. & Chou, S. H. Decorrelation scales of high-resolution turbulent fluxes at the ocean surface and a method to fill in gaps in satellite data products. J. Clim. 19, 3378–3393 (2006).

    ADS 

    Google Scholar
     

  • 46.

    Hobday, A. J. et al. Categorizing and naming marine heatwaves. Oceanography31, 162–173 (2018).


    Google Scholar
     

  • 47.

    Frölicher, T. L. & Laufkötter, C. Emerging risks from marine heat waves. Nat. Commun. 9, 650 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Diffenbaugh, N. S. & Ashfaq, M. Intensification of hot extremes in the United States. Geophys. Res. Lett. 37, L15701 (2010).

    ADS 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *