CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Bebber, M., Lycett, S. & Eren, M. Developing a stable point: evaluating the temporal and geographic consistency of Late Prehistoric unnotched triangular point functional design in Midwestern North America. J. Anthropol. Archaeol.47, 72–82 (2017).

    Article 

    Google Scholar
     

  • 2.

    Cheshier, J. & Kelly, R. Projectile point shape and durability: the effect of thickness: length. Am. Antiq.71, 353–363 (2006).

    Article 

    Google Scholar
     

  • 3.

    Clarkson, C. Testing archaeological approaches to determining past projectile delivery systems using ethnographic and experimental data. in Multidisciplinary Approaches to the Study of Stone Age Weaponry. 189–201 (Springer, Dordrecht, 2016).

  • 4.

    Engelbrecht, W. Interpreting broken arrow points. Am. Antiq.80, 760–766 (2015).

    Article 

    Google Scholar
     

  • 5.

    Hughes, S. Getting to the point: evolutionary change in prehistoric weaponry. J. Archaeol. Method Theory5, 345–408 (1998).

    Article 

    Google Scholar
     

  • 6.

    Mika, A., Flood, K., Norris, J., Bebber, M., Key, A., Buchanan, B., Pargeter, J., Redmond, B. & Eren, M. Miniaturization optimized weapon killing power during the social stress of late pre-contact North America (AD 600-1600). PLoS ONE15, e0230348 (2020).

  • 7.

    Salem, P.E. & Churchill, S.E. Penetration, tissue damage, and lethality of wood-versus lithic-tipped projectiles. In Multidisciplinary Approaches to the Study of Stone Age Weaponry 203–212 (Springer, Dordrecht, 2016).

  • 8.

    Waguespack, N. et al. Making a point: wood-versus stone-tipped projectiles. Antiquity83, 786–800 (2009).

    Article 

    Google Scholar
     

  • 9.

    Wood, J. & Fitzhugh, B. Wound ballistics: the prey specific implications of penetrating trauma injuries from osseous, flaked stone, and composite inset microblade projectiles during the Pleistocene/Holocene transition, Alaska USA. J. Archaeol. Sci.91, 104–117 (2018).

    Article 

    Google Scholar
     

  • 10.

    Loendorf, C., Plumlee, R. & Tiedens, S. Projectile point design: flaked-stone projectile tip selection, function, and style. J. Ariz. Archaeol.4, 83–98 (2017).


    Google Scholar
     

  • 11.

    Friis-Hansen, J. Mesolithic cutting arrows: functional analysis of arrows used in the hunting of large game. Antiquity64, 494–504 (1990).

    Article 

    Google Scholar
     

  • 12.

    Guthrie, R. Osseous projectile points: biological considerations affecting raw material selection and design among Paleoindian peoples. in Animals and Archaeology 1: Hunters and Their Prey. 273–294 (BAR International Series 163, 1983).

  • 13.

    Shea, J., Brown, K. & Davis, Z. Controlled experiments with Middle Palaeolithic spear points: Levallois points. Exp. Archaeol. Replicating Past Objects Behav. Process.1035, 55–72 (2002).


    Google Scholar
     

  • 14.

    Tomka, S. The adoption of the bow and arrow: a model based on experimental performance characteristics. Am. Antiq.78, 553–569 (2013).

    Article 

    Google Scholar
     

  • 15.

    Frison, G. The Casper Site: Hell Gap Bison Kill on the High Plains (Academic Press, New York, 1974).


    Google Scholar
     

  • 16.

    Pargeter, J. Howiesons Poort segments as hunting weapons: experiments with replicated projectiles. S. Afr. Archaeol. Bull.62, 147–153 (2007).


    Google Scholar
     

  • 17.

    Bradfield, J., Lombard, M. & Wadley, L. Southern African arrow poison recipes, their ingredients and implications for Stone Age archaeology. S. Afr. Humanit.27, 29–64 (2020).


    Google Scholar
     

  • 18.

    Atkins, T. The Science and Engineering of Cutting: The Mechanics and Processes of Separating, Scratching and Puncturing Biomaterials, Metals and Non-Metals (Butterworth-Heinemann, London, 2009).


    Google Scholar
     

  • 19.

    Bestul, S. & Hurteau, D. The Total Bowhunting Manual. (Field and Stream, 2015).

  • 20.

    Cheshire, E., Rossi, M. & Atkins, T. Perforation of sheets by pyramidal weapons such as arrowheads. Int. J. Impact Eng35, 457–470 (2008).

    Article 

    Google Scholar
     

  • 21.

    Gaudzinski-Windheuser, S. Hunting lesions in Pleistocene and Early Holocene European bone assemblages and their implications for our knowledge on the use and timing of lithic projectile technology. in Multidisciplinary Approaches to the Study of Stone Age Weaponry. 77–100 (Springer, Dordrecht, 2016).

  • 22.

    MacPhee, N. et al. A comparison of penetration and damage caused by different types of arrowheads on loose and tight fit clothing. Sci. Justice58, 109–120 (2018).

    Article 

    Google Scholar
     

  • 23.

    Milks, A., Dinnis, R. & Pope, M. Morpho-metric variability of early Gravettian tanged “Font-Robert” points, and functional implications. in Multidisciplinary Approaches to the Study of Stone Age Weaponry 135–146 (Springer, Dordrecht, 2016).

  • 24.

    Sisk, M. & Shea, J. Experimental use and quantitative performance analysis of triangular flakes (Levallois points) used as arrowheads. J. Archaeol. Sci.36, 2039–2047 (2009).

    Article 

    Google Scholar
     

  • 25.

    Shea, J. & Sisk, M. Complex projectile technology and Homo sapiens dispersal into western Eurasia. PaleoAnthropology2010, 100–122 (2010).


    Google Scholar
     

  • 26.

    Swain, M., Kieser, D., Shah, S. & Kieser, J. Projectile penetration into ballistic gelatin. J. Mech. Behav. Biomed. Mater.29, 385–392 (2014).

    CAS 
    Article 

    Google Scholar
     

  • 27.

    Sperrazza, J. & Kokinakis, W. Ballistic limits of tissue and clothing. Ann. N. Y. Acad. Sci.152, 163–167 (1968).

    ADS 
    CAS 
    Article 

    Google Scholar
     

  • 28.

    Ashby, E. Momentum, kinetic energy, and arrow penetration (and what they mean for the bowhunter). https://www.grizzlystik.com/Dr.-Ed-Ashby-Reports.aspx 2005; Accessed 3 January 2020.

  • 29.

    Kneubuehl, B. P. (ed.) Wound Ballistics: Basics and Applications (Springer, New York, 2011).


    Google Scholar
     

  • 30.

    Bebber, M. et al. The non-invention of the ceramic arrowhead. J. Archaeol. Sci. Rep.31, 102283 (2020).


    Google Scholar
     

  • 31.

    Bebber, M. & Eren, M. Toward a functional understanding of the North American Old Copper Culture “technomic devolution”. J. Archaeol. Sci.98, 34–44 (2018).

    Article 

    Google Scholar
     

  • 32.

    Key, A. et al. Comparing the use of meat and clay during cutting and projectile research. Eng. Fract. Mech.192, 163–175 (2018).

    Article 

    Google Scholar
     

  • 33.

    Lowe, C. et al. Controlled ballistics tests of ground, percussion-flaked, and pressure-flaked projectile point impact durability: implications for archaeological method and theory. J. Archaeol. Sci. Rep.24, 677–682 (2019).


    Google Scholar
     

  • 34.

    Werner, A. et al. Experimental assessment of proximal-lateral edge grinding on haft damage using replicated Late Pleistocene (Clovis) stone projectile points. Archaeol. Anthropol. Sci.11, 5833–5849 (2019).

    Article 

    Google Scholar
     

  • 35.

    Caranta, R. & Legrain, D. L’efficacité des munitions d’armes de poing. Crépin-Leblond (1993).

  • 36.

    Key, A. & Lycett, S. Reassessing the production of handaxes versus flakes from a functional perspective. Archaeol. Anthropol. Sci.9, 737–753 (2017).

    Article 

    Google Scholar
     

  • 37.

    McGorry, R. A system for the measurement of grip forces and applied moments during hand tool use. Appl. Ergon.32, 271–279 (2001).

    CAS 
    Article 

    Google Scholar
     

  • 38.

    McGorry, R., Dempsey, P. & O’Brien, N. The effect of workstation and task variables on forces applied during simulated meat cutting. Ergonomics47, 1640–1656 (2004).

    Article 

    Google Scholar
     

  • 39.

    Whittaker, J., Pettigrew, D. & Grohsmeyer, R. Atlatl dart velocity: accurate measurements and implications for Paleoindian and archaic archaeology. PaleoAmerica3, 161–181 (2017).

    Article 

    Google Scholar
     

  • 40.

    Karger, B., Sudhues, H., Kneubuehl, B. & Brinkmann, B. Experimental arrow wounds: ballistics and traumatology. J. Trauma Acute Care Surg.45, 495–501 (1998).

    CAS 
    Article 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *