CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Alix-Panabieres, C. & Pantel, K. Challenges in circulating tumour cell research. Nat. Rev. Cancer 14, 623–631 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Nagrath, S. et al. Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature 450, 1235–1239 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 3.

    Yoon, H. J. et al. Sensitive capture of circulating tumour cells by functionalized graphene oxide nanosheets. Nat. Nanotechnol. 8, 735–741 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Zhao, W. et al. Bioinspired multivalent DNA network for capture and release of cells. Proc. Natl Acad. Sci. USA 109, 19626–19631 (2012).

    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Stott, S. L. et al. Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proc. Natl Acad. Sci. USA 107, 18392–18397 (2010).

    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Ozkumur, E. et al. Inertial focusing for tumor antigen-dependent and -independent sorting of rare circulating tumor cells. Sci. Transl. Med. 5, 179ra147 (2013).


    Google Scholar
     

  • 7.

    Lee, A. et al. All-in-one centrifugal microfluidic device for size-selective circulating tumor cell isolation with high purity. Anal. Chem. 86, 11349–11356 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Kim, T. H. et al. FAST: size-selective, clog-free isolation of rare cancer cells from whole blood at a liquid–liquid interface. Anal. Chem. 89, 1155–1162 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Adams, A. A. et al. Highly efficient circulating tumor cell isolation from whole blood and label-free enumeration using polymer-based microfluidics with an integrated conductivity sensor. J. Am. Chem. Soc. 130, 8633–8641 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 10.

    Zhang, Y., Zhou, L. & Qin, L. High-throughput 3D cell invasion chip enables accurate cancer metastatic assays. J. Am. Chem. Soc. 136, 15257–15262 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 11.

    Zhang, Y., Zhang, W. & Qin, L. Mesenchymal-mode migration assay and antimetastatic drug screening with high-throughput microfluidic channel networks. Angew. Chem. Int. Ed. 53, 2344–2348 (2014).

    CAS 

    Google Scholar
     

  • 12.

    Toriello, N. M. et al. Integrated microfluidic bioprocessor for single-cell gene expression analysis. Proc. Natl Acad. Sci. USA 105, 20173–20178 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Reyes, E. E. et al. Quantitative characterization of androgen receptor protein expression and cellular localization in circulating tumor cells from patients with metastatic castration-resistant prostate cancer. J. Transl. Med. 12, 313 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Ciaccio, M. F., Wagner, J. P., Chuu, C. P., Lauffenburger, D. A. & Jones, R. B. Systems analysis of EGF receptor signaling dynamics with microwestern arrays. Nat. Methods 7, 148–155 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Rimm, D. L. What brown cannot do for you. Nat. Biotechnol. 24, 914–916 (2006).

    CAS 
    PubMed 

    Google Scholar
     

  • 16.

    Liu, Y. et al. Modulation of fluorescent protein chromophores to detect protein aggregation with turn-on fluorescence. J. Am. Chem. Soc. 140, 7381–7384 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Pollock, S. B. et al. Highly multiplexed and quantitative cell-surface protein profiling using genetically barcoded antibodies. Proc. Natl Acad. Sci. USA 115, 2836–2841 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Engelen, W., Meijer, L. H., Somers, B., de Greef, T. F. & Merkx, M. Antibody-controlled actuation of DNA-based molecular circuits. Nat. Commun. 8, 14473 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Fan, R. et al. Integrated barcode chips for rapid, multiplexed analysis of proteins in microliter quantities of blood. Nat. Biotechnol. 26, 1373–1378 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Nam, J. M., Thaxton, C. S. & Mirkin, C. A. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301, 1884–1886 (2003).

    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Angelo, M. et al. Multiplexed ion beam imaging of human breast tumors. Nat. Med. 20, 436–442 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Rissin, D. M. et al. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nat. Biotechnol. 28, 595–599 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    de la Rica, R. & Stevens, M. M. Plasmonic ELISA for the ultrasensitive detection of disease biomarkers with the naked eye. Nat. Nanotechnol. 7, 821–824 (2012).

    PubMed 

    Google Scholar
     

  • 24.

    Xue, M. et al. Chemical methods for the simultaneous quantitation of metabolites and proteins from single cells. J. Am. Chem. Soc. 137, 4066–4069 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 25.

    Gerdtsson, T. et al. Multiplex protein detection on circulating tumor cells from liquid biopsies using imaging mass cytometry. Converg. Sci. Phys. Oncol. 4, 015002 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Hughes, A. J. et al. Single-cell western blotting. Nat. Methods 11, 749–755 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 27.

    Sinkala, E. et al. Profiling protein expression in circulating tumour cells using microfluidic western blotting. Nat. Commun. 8, 14622 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 28.

    Poudineh, M. et al. Tracking the dynamics of circulating tumour cell phenotypes using nanoparticle-mediated magnetic ranking. Nat. Nanotechnol. 12, 274–281 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 29.

    Labib, M. et al. Single-cell mRNA cytometry via sequence-specific nanoparticle clustering and trapping. Nat. Chem. 10, 489–495 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 30.

    Herold, S., Herkert, B. & Eilers, M. Facilitating replication under stress: an oncogenic function of MYC? Nat. Rev. Cancer 9, 441–444 (2009).

    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Dang, C. V. MYC on the path to cancer. Cell 149, 22–35 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 32.

    Beaulieu, M. E. et al. Intrinsic cell-penetrating activity propels Omomyc from proof of concept to viable anti-MYC therapy. Sci. Transl. Med. 11, eaar5012 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Burke, A. J., Ali, H., O’Connell, E., Sullivan, F. J. & Glynn, S. A. Sensitivity profiles of human prostate cancer cell lines to an 80 kinase inhibitor panel. Anticancer Res. 36, 633–641 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 34.

    Lakshman, M. et al. Dietary genistein inhibits metastasis of human prostate cancer in mice. Cancer Res. 68, 2024–2032 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Thiery, J. P. Epithelial–mesenchymal transitions in tumour progression. Nat. Rev. Cancer 2, 442–454 (2002).

    CAS 
    PubMed 

    Google Scholar
     

  • 36.

    Lindsay, C. R. et al. Vimentin and Ki67 expression in circulating tumour cells derived from castrate-resistant prostate cancer. BMC Cancer 16, 168 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 37.

    Ray Chaudhuri, A. & Nussenzweig, A. The multifaceted roles of PARP1 in DNA repair and chromatin remodelling. Nat. Rev. Mol. Cell Biol. 18, 610–621 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Schiewer, M. J. et al. Dual roles of PARP-1 promote cancer growth and progression. Cancer Discov. 2, 1134–1149 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Kosaka, T. et al. The prognostic significance of OCT4 expression in patients with prostate cancer. Hum. Pathol. 51, 1–8 (2016).

    CAS 
    PubMed 

    Google Scholar
     

  • 40.

    Salem, A. F., Whitaker-Menezes, D., Howell, A., Sotgia, F. & Lisanti, M. P. Mitochondrial biogenesis in epithelial cancer cells promotes breast cancer tumor growth and confers autophagy resistance. Cell Cycle 11, 4174–4180 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Gao, L. et al. Androgen receptor promotes ligand-independent prostate cancer progression through c-Myc upregulation. PLoS ONE 8, e63563 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 42.

    Wu, M. et al. Proteome analysis of human androgen-independent prostate cancer cell lines: variable metastatic potentials correlated with vimentin expression. Proteomics 7, 1973–1983 (2007).

    CAS 
    PubMed 

    Google Scholar
     

  • 43.

    Stratton, M. R., Campbell, P. J. & Futreal, P. A. The cancer genome. Nature 458, 719–724 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Tran, C. et al. Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science 324, 787–790 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 45.

    Scher, H. I. et al. Antitumour activity of MDV3100 in castration-resistant prostate cancer: a phase 1–2 study. Lancet 375, 1437–1446 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Watson, P. A., Arora, V. K. & Sawyers, C. L. Emerging mechanisms of resistance to androgen receptor inhibitors in prostate cancer. Nat. Rev. Cancer 15, 701–711 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 47.

    Sinkevicius, K. W. et al. Neurotrophin receptor TrkB promotes lung adenocarcinoma metastasis. Proc. Natl Acad. Sci. USA 111, 10299–10304 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 48.

    Chen, Y. & Chi, P. Basket trial of TRK inhibitors demonstrates efficacy in TRK fusion-positive cancers. J. Hematol. Oncol. 11, 78–78 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    Wylie, A. A. et al. The allosteric inhibitor ABL001 enables dual targeting of BCR–ABL1. Nature 543, 733–737 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 50.

    Holderfield, M., Deuker, M. M., McCormick, F. & McMahon, M. Targeting RAF kinases for cancer therapy: BRAF-mutated melanoma and beyond. Nat. Rev. Cancer 14, 455–467 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Hauschild, A. et al. Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial. Lancet 380, 358–365 (2012).

    CAS 

    Google Scholar
     

  • 52.

    Rebbeck, T. R. et al. Prophylactic oophorectomy in carriers of BRCA1 or BRCA2 mutations. N. Engl. J. Med. 346, 1616–1622 (2002).

    PubMed 

    Google Scholar
     

  • 53.

    Jeyasekharan, A. D. et al. A cancer-associated BRCA2 mutation reveals masked nuclear export signals controlling localization. Nat. Struct. Mol. Biol. 20, 1191–1198 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 54.

    Eriksson, I., Wettermark, B. & Bergfeldt, K. Real-world use and outcomes of olaparib: a population-based cohort study. Target. Oncol. 13, 725–733 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 55.

    Mateo, J. et al. DNA-repair defects and olaparib in metastatic prostate cancer. N. Engl. J. Med. 373, 1697–1708 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 56.

    Rowe, B. P. & Glazer, P. M. Emergence of rationally designed therapeutic strategies for breast cancer targeting DNA repair mechanisms. Breast Cancer Res. 12, 203 (2010).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 57.

    Green, B. J. et al. Isolation of phenotypically distinct cancer cells using nanoparticle-mediated sorting. ACS Appl. Mater. Interfaces 9, 20435–20443 (2017).

    CAS 
    PubMed 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *