CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Fry, F. J., Ades, H. W. & Fry, W. J. Production of reversible changes in the central nervous system by ultrasound. Science 127, 83–84 (1958).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Mihran, R. T., Barnes, F. S. & Wachtel, H. Temporally-specific modification of myelinated axon excitability in vitro following a single ultrasound pulse. Ultrasound Med. Biol. 16, 297–309 (1990).

    CAS 
    PubMed 

    Google Scholar
     

  • 3.

    Lee, W. et al. Transcranial focused ultrasound stimulation of motor cortical areas in freely-moving awake rats. BMC Neurosci. 19, 57 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Kamimura, H. A. S. et al. Focused ultrasound neuromodulation of cortical and subcortical brain structures using 1.9 MHz. Med. Phys. 43, 5730–5735 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 5.

    Yoo, S.-S. et al. Focused ultrasound modulates region-specific brain activity. NeuroImage 56, 1267–1275 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 6.

    Lee, W. et al. Image-guided focused ultrasound-mediated regional brain stimulation in sheep. Ultrasound Med. Biol. 42, 459–470 (2016).

    PubMed 

    Google Scholar
     

  • 7.

    Folloni, D. et al. Manipulation of subcortical and deep cortical activity in the primate brain using transcranial focused ultrasound stimulation. Neuron 101, 1109-1116.e5 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 8.

    Yang, P.-F. et al. Neuromodulation of sensory networks in monkey brain by focused ultrasound with MRI guidance and detection. Sci. Rep. 8, 7993 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Deffieux, T. et al. Low-intensity focused ultrasound modulates monkey visuomotor behavior. Curr. Biol. 23, 2430–2433 (2013).

    CAS 
    PubMed 

    Google Scholar
     

  • 10.

    Monti, M. M., Schnakers, C., Korb, A. S., Bystritsky, A. & Vespa, P. M. Non-invasive ultrasonic thalamic stimulation in disorders of consciousness after severe brain injury: A first-in-man report. Brain Stimul. 9, 940–941 (2016).

    PubMed 

    Google Scholar
     

  • 11.

    Hameroff, S. et al. Transcranial ultrasound (TUS) effects on mental states: A pilot study. Brain Stimul. 6, 409–415 (2013).

    PubMed 

    Google Scholar
     

  • 12.

    Beisteiner, R. et al. Transcranial pulse stimulation with ultrasound in Alzheimer’s disease—A new navigated focal brain therapy. Adv. Sci. https://doi.org/10.1101/665471 (2019).

    Article 

    Google Scholar
     

  • 13.

    Blackmore, J., Shrivastava, S., Sallet, J., Butler, C. R. & Cleveland, R. O. Ultrasound neuromodulation: A review of results, mechanisms and safety. Ultrasound Med. Biol. 45, 1509–1536 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    O’Brien, W. D. Ultrasound–biophysics mechanisms. Prog. Biophys. Mol. Biol. 93, 212–255 (2007).

    PubMed 

    Google Scholar
     

  • 15.

    Wells, J. et al. Biophysical mechanisms of transient optical stimulation of peripheral nerve. Biophys. J. 93, 2567–2580 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 16.

    Shapiro, M. G., Homma, K., Villarreal, S., Richter, C.-P. & Bezanilla, F. Infrared light excites cells by changing their electrical capacitance. Nat. Commun. 3, 1–11 (2012).


    Google Scholar
     

  • 17.

    Wattiez, N. et al. Transcranial ultrasonic stimulation modulates single-neuron discharge in macaques performing an antisaccade task. Brain Stimulat. 10, 1024–1031 (2017).


    Google Scholar
     

  • 18.

    Ye, P. P., Brown, J. R. & Pauly, K. B. Frequency dependence of ultrasound neurostimulation in the mouse brain. Ultrasound Med. Biol. 42, 1512–1530 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Kubanek, J., Shukla, P., Das, A., Baccus, S. A. & Goodman, M. B. Ultrasound elicits behavioral responses through mechanical effects on neurons and ion channels in a simple nervous system. J. Neurosci. 38, 3081–3091 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 20.

    Prieto, M. L., Oralkan, Ö, Khuri-Yakub, B. T. & Maduke, M. C. Dynamic response of model lipid membranes to ultrasonic radiation force. PLoS ONE 8, e77115 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 21.

    Nikolaev, Y. A., Dosen, P. J., Laver, D. R., van Helden, D. F. & Hamill, O. P. Single mechanically-gated cation channel currents can trigger action potentials in neocortical and hippocampal pyramidal neurons. Brain Res. 1608, 1–13 (2015).

    CAS 
    PubMed 

    Google Scholar
     

  • 22.

    Kubanek, J. et al. Ultrasound modulates ion channel currents. Sci. Rep. 6, 24170 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Prieto, M. L., Firouzi, K., Khuri-Yakub, B. T. & Maduke, M. Activation of Piezo1 but not NaV1.2 channels by ultrasound at 43 MHz. Ultrasound Med. Biol. 44, 1217–1232 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Krasovitski, B., Frenkel, V., Shoham, S. & Kimmel, E. Intramembrane cavitation as a unifying mechanism for ultrasound-induced bioeffects. Proc. Natl. Acad. Sci. 108, 3258–3263 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 25.

    Plaksin, M., Kimmel, E. & Shoham, S. Cell-type-selective effects of intramembrane cavitation as a unifying theoretical framework for ultrasonic neuromodulation. eNeuro https://doi.org/10.1523/ENEURO.0136-15.2016 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    King, R. L., Brown, J. R., Newsome, W. T. & Pauly, K. B. Effective parameters for ultrasound-induced in vivo neurostimulation. Ultrasound Med. Biol. 39, 312–331 (2013).

    PubMed 

    Google Scholar
     

  • 27.

    Tufail, Y., Yoshihiro, A., Pati, S., Li, M. M. & Tyler, W. J. Ultrasonic neuromodulation by brain stimulation with transcranial ultrasound. Nat. Protoc. 6, 1453–1470 (2011).

    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Kim, H., Chiu, A., Lee, S. D., Fischer, K. & Yoo, S.-S. Focused ultrasound-mediated non-invasive brain stimulation: Examination of sonication parameters. Brain Stimul. 7, 748–756 (2014).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Legon, W. et al. Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. Nat. Neurosci. 17, 322–329 (2014).

    CAS 
    PubMed 

    Google Scholar
     

  • 30.

    Guo, H. et al. Ultrasound produces extensive brain activation via a cochlear pathway. Neuron 98, 1020–1030 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 31.

    Sato, T., Shapiro, M. G. & Tsao, D. Y. Ultrasonic neuromodulation causes widespread cortical activation via an indirect auditory mechanism. Neuron 98, 1031-1041.e5 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 32.

    Yoon, K. et al. Effects of sonication parameters on transcranial focused ultrasound brain stimulation in an ovine model. PLoS ONE 14, e0224311 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 33.

    Legon, W., Rowlands, A., Opitz, A., Sato, T. F. & Tyler, W. J. Pulsed ultrasound differentially stimulates somatosensory circuits in humans as indicated by EEG and fMRI. PLoS ONE 7, e51177 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Lee, W., Kim, H., Lee, S., Yoo, S.-S. & Chung, Y. A. Creation of various skin sensations using pulsed focused ultrasound: Evidence for functional neuromodulation. Int. J. Imaging Syst. Technol. 24, 167–174 (2014).


    Google Scholar
     

  • 35.

    Legon, W., Ai, L., Bansal, P. & Mueller, J. K. Neuromodulation with single-element transcranial focused ultrasound in human thalamus. Hum. Brain Mapp. 39, 1995–2006 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Morris, H., Rivens, I., Shaw, A. & ter Haar, G. Investigation of the viscous heating artefact arising from the use of thermocouples in a focused ultrasound field. Phys. Med. Biol. 53, 4759–4776 (2008).

    PubMed 

    Google Scholar
     

  • 37.

    Nightingale, K. Acoustic radiation force impulse (ARFI) imaging: A review. Curr. Med. Imaging Rev. 7, 328–339 (2011).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Menz, M. D. et al. Radiation force as a physical mechanism for ultrasonic neurostimulation of the ex vivo retina. J. Neurosci. 39, 6251–6264 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 39.

    Tyler, W. J. et al. Remote excitation of neuronal circuits using low-intensity, low-frequency ultrasound. PLoS ONE 3, e3511 (2008).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 40.

    Lee, J. et al. A MEMS ultrasound stimulation system for modulation of neural circuits with high spatial resolution in vitro. Microsyst. Nanoeng. 5, 28 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 41.

    Han, S., Kim, M., Kim, H., Shin, H. & Youn, I. Ketamine inhibits ultrasound stimulation-induced neuromodulation by blocking cortical neuron activity. Ultrasound Med. Biol. 44, 635–646 (2018).

    PubMed 

    Google Scholar
     

  • 42.

    Mohammadjavadi, M. et al. Elimination of peripheral auditory pathway activation does not affect motor responses from ultrasound neuromodulation. Brain Stimul. 12, 901–910 (2019).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Selzo, M. R. & Gallippi, C. M. Viscoelastic response (VisR) imaging for assessment of viscoelasticity in voigt materials. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60, 2488–2500 (2013).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 44.

    Lin, Z. et al. On-chip ultrasound modulation of pyramidal neuronal activity in hippocampal slices. Adv. Biosyst. 2, 1800041 (2018).


    Google Scholar
     

  • 45.

    Morris, C. E. & Juranka, P. F. Nav channel mechanosensitivity: Activation and inactivation accelerate reversibly with stretch. Biophys. J. 93, 822–833 (2007).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 46.

    Gaub, B. M. et al. Neurons differentiate magnitude and location of mechanical stimuli. Proc. Natl. Acad. Sci. 117, 848–856 (2020).

    CAS 
    PubMed 

    Google Scholar
     

  • 47.

    Chen, T.-W. et al. Ultra-sensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 48.

    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *