[ad_1]
Schrödinger, E. Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 23, 823–828 (1935).
Leggett, A. J. Macroscopic quantum systems and the quantum theory of measurement. Prog. Theor. Phys. Suppl. 69, 80–100 (1980).
Weinberg, S. Precision tests of quantum mechanics. Phys. Rev. Lett. 62, 485–488 (1989).
Bell, J. S. Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy (Cambridge Univ. Press, 2004).
Ghirardi, G. C., Rimini, A. & Weber, T. Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D 34, 470–491 (1986).
Adler, S. L. Quantum Theory as an Emergent Phenomenon: the Statistical Mechanics of Matrix Models as the Precursor of Quantum Field Theory (Cambridge Univ. Press, 2004).
Weinberg, S. Collapse of the state vector. Phys. Rev. A 85, 062116 (2012).
Ghirardi, G. C., Pearle, P. & Rimini, A. Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles. Phys. Rev. A 42, 78–89 (1990).
Bassi, A. & Ghirardi, G. Dynamical reduction models. Phys. Rep. 379, 257–426 (2003).
Bassi, A., Lochan, K., Satin, S., Singh, T. P. & Ulbricht, H. Models of wave-function collapse, underlying theories, and experimental tests. Rev. Mod. Phys. 85, 471–527 (2013).
Arndt, M. & Hornberger, K. Testing the limits of quantum mechanical superpositions. Nat. Phys. 10, 271–277 (2014).
Feynman, R. Feynman Lectures on Gravitation (CRC Press, 2018).
Penrose, R. & Mermin, N. D. The Emperor’s New Mind: Concerning Computers, Minds, and the Laws of Physics (Oxford Univ. Press, 1990).
Penrose, R. On gravity’s role in quantum state reduction. Gen. Relativ. Gravit. 28, 581–600 (1996).
Penrose, R. On the gravitization of quantum mechanics 1: Quantum state reduction. Found. Phys. 44, 557–575 (2014).
Howl, R., Penrose, R. & Fuentes, I. Exploring the unification of quantum theory and general relativity with a Bose–Einstein condensate. New J. Phys. 21, 043047 (2019).
Diósi, L. A universal master equation for the gravitational violation of quantum mechanics. Phys. Lett. A 120, 377–381 (1987).
Diósi, L. Models for universal reduction of macroscopic quantum fluctuations. Phys. Rev. A 40, 1165–1174 (1989).
Ghirardi, G., Grassi, R. & Rimini, A. Continuous-spontaneous-reduction model involving gravity. Phys. Rev. A 42, 1057–1064 (1990).
Diósi, L. Gravity-related wave function collapse: mass density resolution. J. Phys. Conf. Ser. 442, 012001 (2013).
Diósi, L. Gravitation and quantum-mechanical localization of macro-objects. Phys. Lett. A 105, 199–202 (1984).
Bahrami, M., Großardt, A., Donadi, S. & Bassi, A. The Schrödinger–Newton equation and its foundations. New J. Phys. 16, 115007 (2014).
Salart, D., Baas, A., van Houwelingen, J. A., Gisin, N. & Zbinden, H. Spacelike separation in a Bell test assuming gravitationally induced collapses. Phys. Rev. Lett. 100, 220404 (2008).
Marshall, W., Simon, C., Penrose, R. & Bouwmeester, D. Towards quantum superpositions of a mirror. Phys. Rev. Lett. 91, 130401 (2003).
Kovachy, T. et al. Quantum superposition at the half-metre scale. Nature 528, 530–533 (2015).
Fein, Y. Y. et al. Quantum superposition of molecules beyond 25 kDa. Nat. Phys. 15, 1242–1245 (2019).
Lee, K. C. et al. Entangling macroscopic diamonds at room temperature. Science 334, 1253–1256 (2011).
Chan, J. et al. Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011).
Teufel, J. et al. Sideband cooling of micromechanical motion to the quantum ground state. Nature 475, 359–363 (2011).
Wollman, E. E. et al. Quantum squeezing of motion in a mechanical resonator. Science 349, 952–955 (2015).
Jain, V. et al. Direct measurement of photon recoil from a levitated nanoparticle. Phys. Rev. Lett. 116, 243601 (2016).
Hong, S. et al. Hanbury Brown and Twiss interferometry of single phonons from an optomechanical resonator. Science 358, 203–206 (2017).
Vovrosh, J. et al. Parametric feedback cooling of levitated optomechanics in a parabolic mirror trap. J. Opt. Soc. Am. B 34, 1421–1428 (2017).
Riedinger, R. et al. Remote quantum entanglement between two micromechanical oscillators. Nature 556, 473–477 (2018).
Bahrami, M., Smirne, A. & Bassi, A. Role of gravity in the collapse of a wave function: a probe into the Diósi–Penrose model. Phys. Rev. A 90, 062105 (2014).
Helou, B., Slagmolen, B., McClelland, D. E. & Chen, Y. LISA Pathfinder appreciably constrains collapse models. Phys. Rev. D 95, 084054 (2017).
Diósi, L. & Lukács, B. Calculation of X-ray signals from Károlyházy hazy space-time. Phys. Lett. A 181, 366–368 (1993).
Neder, H., Heusser, G. & Laubenstein, M. Low level γ-ray germanium-spectrometer to measure very low primordial radionuclide concentrations. Appl. Radiat. Isot. 53, 191–195 (2000).
Heusser, G., Laubenstein, M. & Neder, H. Low-level germanium gamma-ray spectrometry at the μBq/kg level and future developments towards higher sensitivity. Radioact. Environ. 8, 495–510 (2006).
Fu, Q. Spontaneous radiation of free electrons in a nonrelativistic collapse model. Phys. Rev. A 56, 1806–1811 (1997).
Piscicchia, K. et al. CSL collapse model mapped with the spontaneous radiation. Entropy 19, 319 (2017).
Tilloy, A. & Stace, T. M. Neutron star heating constraints on wave-function collapse models. Phys. Rev. Lett. 123, 080402 (2019).
Debye, P. Interferenz von Röntgenstrahlen und Wärmebewegung. Ann. Phys. 348, 49–92 (1913).
Waller, I. Zur Frage der Einwirkung der Wärmebewegung auf die Interferenz von Röntgenstrahlen. Z. Phys. 17, 398–408 (1923).
Gao, H. & Peng, L.-M. Parameterization of the temperature dependence of the Debye–Waller factors. Acta Crystallogr. A 55, 926–932 (1999).
Adler, S. L. & Bassi, A. Collapse models with non-white noises. J. Phys. A 40, 15083 (2007).
Adler, S. L. & Bassi, A. Collapse models with non-white noises: II. Particle-density coupled noises. J. Phys. A 41, 395308 (2008).
Gasbarri, G., Toroš, M., Donadi, S. & Bassi, A. Gravity induced wave function collapse. Phys. Rev. D 96, 104013 (2017).
Breuer, H. P. & Petruccione, F. The Theory of Open Quantum Systems (Oxford Univ. Press, 2002).
Adler, S. L. & Ramazanoglu, F. M. Photon-emission rate from atomic systems in the CSL model. J. Phys. A 40, 13395 (2007).
Adler, S. L., Bassi, A. & Donadi, S. On spontaneous photon emission in collapse models. J. Phys. A 46, 245304 (2013).
Bassi, A. & Donadi, S. Spontaneous photon emission from a non-relativistic free charged particle in collapse models: a case study. Phys. Lett. A 378, 761–765 (2014).
Donadi, S., Deckert, D.-A. & Bassi, A. On the spontaneous emission of electromagnetic radiation in the CSL model. Ann. Phys. 340, 70–86 (2014).
Boswell, M. et al. Mage—a Geant4-based Monte Carlo application framework for low-background germanium experiments. IEEE Trans. Nucl. Sci. 58, 1212–1220 (2011).
[ad_2]
Source link