CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Green, M. A. & Bremner, S. P. Energy conversion approaches and materials for high-efficiency photovoltaics. Nat. Mater.16, 23–34 (2016).


    Google Scholar
     

  • 2.

    Heo, J. H. et al. Efficient inorganic-organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. Nat. Photonics7, 486–491 (2013).

    CAS 

    Google Scholar
     

  • 3.

    Yoo, E. J., et al. Resistive switching behavior in organic-inorganic hybrid CH3NH3PbI3-xClx perovskite for resistive random access memory devices. Adv. Mater.27, 6170–6175 (2015).

  • 4.

    Grätzel, N.-G. P. M. & Miyasaka, T. Organic–Inorganic Halide Perovskite Photovoltaics (Springer, 2016). https://doi.org/10.1007/978-3-319-35114-8_4

  • 5.

    Sun, J., et al Organic/inorganic metal halide perovskite optoelectronic devices beyond solar cells. Adv. Sci.5, 1700780 (2018).

  • 6.

    Ono, L. K. & Qi, Y. Research progress on organic-inorganic halide perovskite materials and solar cells. J. Phys. D: Appl. Phys.51, 093001 (2018).


    Google Scholar
     

  • 7.

    Lee, Y. M., et al. Comprehensive understanding and controlling the defect structures: an effective approach for organic–inorganic hybrid perovskite-based solar-cell application. Front. Energy Res. 6, https://doi.org/10.3389/fenrg.2018.00128 (2018).

  • 8.

    Stranks, S. D. & Snaith, H. J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol.10, 391–402 (2015).

    CAS 

    Google Scholar
     

  • 9.

    Green, M. A. et al. Solar cell efficiency tables (version 45). Prog. Photovolt.23, 1–9 (2015).


    Google Scholar
     

  • 10.

    Green, M. A., Ho-Baillie, A. & Snaith, H. J. The emergence of perovskite solar cells. Nat. Photonics8, 506–514 (2014).

    CAS 

    Google Scholar
     

  • 11.

    Song, T. Bin et al. Perovskite solar cells: film formation and properties. J. Mater. Chem. A3, 9032–9050 (2015).

  • 12.

    Brenner, T. M., Egger, D. A., Kronik, L., Hodes, G. & Cahen, D. Hybrid organic–inorganic perovskites: Low-cost semiconductors with intriguing charge-transport properties. Nat. Rev. Mater.1, 1–16 (2016).


    Google Scholar
     

  • 13.

    Khenkin, M. V. et al. Consensus statement for stability assessment and reporting for perovskite photovoltaics based on ISOS procedures. Nat. Energy5, 35–49 (2020).


    Google Scholar
     

  • 14.

    Boyd, C. C., Cheacharoen, R., Leijtens, T. & McGehee, M. D. Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem. Rev. 119, 3418–3451 (2019).

  • 15.

    Saliba, M. Perovskite solar cells must come of age: developing aging standards is required for industrialization. Science359, 388–389 (2018).

    CAS 

    Google Scholar
     

  • 16.

    Kim, N. K., et al. Investigation of thermally induced degradation in CH3NH3PbI3 Perovskite solar cells using in-situ synchrotron radiation analysis. Sci. Rep. 7, 4645 (2017).

  • 17.

    Lee, Y. M. et al. Surface instability of Sn-based hybrid perovskite thin film, CH3NH3SnI3: the origin of its material instability. J. Phys. Chem. Lett. 9, 2293–2297 (2018).

  • 18.

    Babayigit, A. et al. Assessing the toxicity of Pb-and Sn-based perovskite solar cells in model organism Danio rerio. Sci. Rep.6, 18721 (2016).

    CAS 

    Google Scholar
     

  • 19.

    Tong, S., Von Schirnding, Y. E. & Prapamontol, T. Environmental lead exposure: a public health problem of global dimensions. Bull. World Health Organ.78, 1068–1077 (2000).

    CAS 

    Google Scholar
     

  • 20.

    Wang, C., Ecker, B. R., Wei, H., Huang, J. & Gao, Y. Environmental surface stability of the MAPbBr3 single crystal. J. Phys. Chem. C122, 3513–3522.

  • 21.

    Oranskaia, A., Yin, J., Bakr, O. M., Brédas, J.-L. & Mohammed, O. F. Halogen migration in hybrid perovskites: the organic cation matters. J. Phys. Chem. Lett.9, 5474–5480.

  • 22.

    Park, J. S., Kim, S., Xie, Z. & Walsh, A. Point defect engineering in thin-film solar cells. Nat. Rev. Mater.3, 194–210 (2018).

    CAS 

    Google Scholar
     

  • 23.

    Hutter, E. M. et al. Direct-indirect character of the bandgap in methylammonium lead iodide perovskite. Nat. Mater.16, 115–120 (2017).

    CAS 

    Google Scholar
     

  • 24.

    Lee, Y. M. et al. Significant THz-wave absorption property in mixed δ– And α-FAPbI3 hybrid perovskite flexible thin film formed by sequential vacuum evaporation. Appl. Phys. Express12, 051003 (2019).

    CAS 

    Google Scholar
     

  • 25.

    Maeng, I. et al. Significant THz absorption in CH3NH2 molecular defect-incorporated organic-inorganic hybrid perovskite thin film. Sci. Rep.9, 5811 (2019).


    Google Scholar
     

  • 26.

    Weller, M. T., Weber, O. J., Henry, P. F., Di Pumpo, A. M. & Hansen, T. C. Complete structure and cation orientation in the perovskite photovoltaic methylammonium lead iodide between 100 and 352 K. Chem. Commun. 51, 4180–4183 (2015).

  • 27.

    La-O-Vorakiat, C. et al. Phonon mode transformation across the orthohombic-tetragonal phase transition in a lead iodide perovskite CH3NH3PbI3: a terahertz time-domain spectroscopy approach. J. Phys. Chem. Lett.7, 1–6 (2015).


    Google Scholar
     

  • 28.

    Brivio, F. et al. Lattice dynamics and vibrational spectra of the orthorhombic, tetragonal, and cubic phases of methylammonium lead iodide. Phys. Rev. B: Condens. Matter Mater. Phys.92, 144308 (2015).


    Google Scholar
     

  • 29.

    Maeng, I. et al. Strong linear correlation between CH3NH2 molecular defect and THz-Wave absorption in CH3NH3PbI3 hybrid perovskite thin film. Nanomaterials10, 721 (2020).

    CAS 

    Google Scholar
     

  • 30.

    Ho, L., Pepper, M. & Taday, P. Terahertz spectroscopy: signatures and fingerprints. Nat. Photonics2, 541–543 (2008).

    CAS 

    Google Scholar
     

  • 31.

    Hashimshony, D. et al. Characterization of the electrical properties and thickness of thin epitaxial semiconductor layers by THz reflection spectroscopy. J. Appl. Phys. 90, 5778–5781 (2001).

  • 32.

    Jeon, T. I. & Grischkowsky, D. Characterization of optically dense, doped semiconductors by reflection THz time domain spectroscopy. Appl. Phys. Lett. 72, 3032–3034 (1998).

  • 33.

    Samoska, L. A. An overview of solid-state integrated circuit amplifiers in the submillimeter-wave and THz regime. IEEE Trans. Terahertz Sci. Technol.1, 9–24 (2011).

    CAS 

    Google Scholar
     

  • 34.

    Burford, N. M. & El-Shenawee, M. O. Review of terahertz photoconductive antenna technology. Opt. Eng.56, 010901 (2017).


    Google Scholar
     

  • 35.

    Jung, M. C. et al. Formation of CH3NH2-incorporated intermediate state in CH3NH3PbI3 hybrid perovskite thin film formed by sequential vacuum evaporation. Appl. Phys. Express12, 015501 (2019).


    Google Scholar
     

  • 36.

    Wagner, C. D., Riggs, W. M., Davis, L. E., Moulder, J. F. & Muilenberg, G. E. Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation Of Xps Data—Catalog—UW-Madison Libraries (Physical Electronics, Chanhassen, MN,1995).

  • 37.

    Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev.140, A1133 (1965).


    Google Scholar
     

  • 38.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B: Condens. Matter Mater. Phys. 54, 11169–11186 (1996).

  • 39.

    Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B47, 558–561 (1993).

    CAS 

    Google Scholar
     

  • 40.

    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B50, 17953–17979 (1994).

  • 41.

    Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B: Condens. Matter Mater. Phys.59, 1758–1775 (1999).


    Google Scholar
     

  • 42.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

  • 43.

    Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys.132, 154104 (2010).


    Google Scholar
     

  • 44.

    Wang, Y. et al. Pressure-induced phase transformation, reversible amorphization, and anomalous visible light response in organolead bromide perovskite. J. Am. Chem. Soc. 137, 11144–11149 (2015).

  • 45.

    Hellman, O., Abrikosov, I. A. & Simak, S. I. Lattice dynamics of anharmonic solids from first principles. Phys. Rev. B: Condens. Matter Mater. Phys.84, 180301 (2011).


    Google Scholar
     

  • 46.

    Hellman, O., Steneteg, P., Abrikosov, I. A. & Simak, S. I. Temperature dependent effective potential method for accurate free energy calculations of solids. Phys. Rev. B: Condens. Matter Mater. Phys.87, 104111 (2013).


    Google Scholar
     

  • 47.

    Hellman, O. & Abrikosov, I. A. Temperature-dependent effective third-order interatomic force constants from first principles. Phys. Rev. B: Condens. Matter Mater. Phys.88, 144301 (2013).


    Google Scholar
     

  • 48.

    Nosé, S. An extension of the canonical ensemble molecular dynamics method. Mol. Phys.57, 187–191 (1986).


    Google Scholar
     

  • 49.

    Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A31, 1695–1697 (1985).

    CAS 

    Google Scholar
     

  • 50.

    Skelton, J. M. et al. Lattice dynamics of the tin sulphides SnS2, SnS and Sn2S3: vibrational spectra and thermal transport. Phys. Chem. Chem. Phys. 19, 12452–12465 (2017).

  • 51.

    Togo, A. & Tanaka, I. First principles phonon calculations in materials science. Scr. Mater.108, 1–5 (2015).

    CAS 

    Google Scholar
     

  • 52.

    Wang, K. H., Li, L. C., Shellaiah, M. & Sun, K. W. Structural and photophysical properties of methylammonium lead tribromide (MAPbBr3) single crystals. Sci. Rep.7, 1–14 (2017).


    Google Scholar
     

  • 53.

    Jung, M.-C. et al. Formation of CH3NH2-incorporated intermediate state in CH3NH3PbI3 hybrid perovskite thin film formed by sequential vacuum evaporation. Appl. Phys. Express12, 015501–015501 (2018).

  • 54.

    Jung, M.-C., et al. The presence of CH3NH2 neutral species in organometal halide perovskite films. Appl. Phys. Lett. 108, 073901 (2016).

  • 55.

    Yi, Z. et al. Will organic-inorganic hybrid halide lead perovskites be eliminated from optoelectronic applications? Nanoscale Adv.1, 1276–1289 (2019).


    Google Scholar
     

  • 56.

    Jung, M.-C. et al. Clean interface without any intermixed state between ultra-thin P3 polymer and CH3NH3PbI3 hybrid perovskite thin film. Sci. Rep.9, 1–6 (2019).


    Google Scholar
     

  • 57.

    Sendner, M. et al. Optical phonons in methylammonium lead halide perovskites and implications for charge transport. Mater. Horiz.3, 613–620 (2016).

    CAS 

    Google Scholar
     

  • 58.

    Zhao, D. et al. Low-frequency optical phonon modes and carrier mobility in the halide perovskite CH3NH3PbBr3 using terahertz time-domain spectroscopy. Appl. Phys. Lett.111, 201903 (2017).


    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *