CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING

[ad_1]

  • 1.

    McKinney, M. L. Urbanization, biodiversity, and conservation. Bioscience 52, 883–890 (2002).


    Google Scholar
     

  • 2.

    McKinney, M. L. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 127, 247–260 (2006).


    Google Scholar
     

  • 3.

    Marzluff, J. M. & Ewing, K. Restoration of fragmented landscapes for the conservation of birds: a general framework and specific recommendations for urbanizing landscapes. Restor. Ecol. 9, 280–292 (2001).


    Google Scholar
     

  • 4.

    Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 34, 487–515 (2003).


    Google Scholar
     

  • 5.

    Chace, J. F. & Walsh, J. J. Urban effects on native avifauna: a review. Landsc. Urban Plan. 74, 46–69 (2006).


    Google Scholar
     

  • 6.

    Shanahan, D. F., Strohbach, M. W., Warren, P. S. & Fuller, R. A. The challenges of urban living. In Avian Urban Ecology: Behavioural and Physiological Adaptations (eds Gil, D. & Brumm, H.) 3–20 (Oxford University Press, Oxford, 2014).


    Google Scholar
     

  • 7.

    Longcore, T. & Rich, C. Ecological light pollution. Front. Ecol. Environ. 2, 191–198 (2004).


    Google Scholar
     

  • 8.

    Patricelli, G. L. & Blickley, J. L. Avian communication in urban noise: causes and consequences of vocal adjustment. Auk 123, 639–649 (2006).


    Google Scholar
     

  • 9.

    Grimm, N. B. et al. The changing landscape: ecosystem responses to urbanization and pollution across climatic and societal gradients. Front. Ecol. Environ. 6, 264–272 (2008).


    Google Scholar
     

  • 10.

    Fuller, R. A., Warren, P. H., Armsworth, P. R., Barbosa, O. & Gaston, K. J. Garden bird feeding predicts the structure of urban avian assemblages. Divers. Distrib. 14, 131–137 (2008).


    Google Scholar
     

  • 11.

    Chamberlain, D. E. et al. Avian productivity in urban landscapes: a review and meta-analysis. Ibis 151, 1–18 (2009).


    Google Scholar
     

  • 12.

    Faeth, S. H., Warren, P. S., Shochat, E. & Marussich, W. A. Trophic dynamics in urban communities. Bioscience 55, 399–407 (2005).


    Google Scholar
     

  • 13.

    Shochat, E. et al. Invasion, competition, and biodiversity loss in urban ecosystems. Bioscience 60, 199–208 (2010).


    Google Scholar
     

  • 14.

    Blair, R. B. Land use and avian species diversity along an urban gradient. Ecol. Appl. 6, 506–519 (1996).


    Google Scholar
     

  • 15.

    Dearborn, D. C. & Kark, S. Motivations for conserving urban biodiversity. Conserv. Biol. 24, 432–440 (2010).

    PubMed 

    Google Scholar
     

  • 16.

    Callaghan, C. T. et al. Heterogeneous urban green areas are bird diversity hotspots: insights using continental-scale citizen science data. Landsc. Ecol. 34, 1231–1246 (2019).


    Google Scholar
     

  • 17.

    Ives, C. D. et al. Cities are hotspots for threatened species. Glob. Ecol. 25, 117–126 (2015).


    Google Scholar
     

  • 18.

    Sol, D., González-Lagos, C., Moreira, D., Maspons, J. & Lapiedra, O. Urbanisation tolerance and the loss of avian diversity. Ecol. Lett. 17, 942–950 (2014).

    PubMed 

    Google Scholar
     

  • 19.

    Kettel, E. F., Gentle, L. K., Quinn, J. L. & Yarnell, W. The breeding performance of raptors in urban landscapes: a review and meta-analysis. J. Ornithol. 159, 1–8 (2018).


    Google Scholar
     

  • 20.

    Stephens, D. W. & Krebs, J. R. Foraging Theory (Princeton University Press, Princeton, 1986).


    Google Scholar
     

  • 21.

    MacArthur, R. H. & Pianka, E. R. On optimal use of a patchy environment. Am. Nat. 100, 603–609 (1966).


    Google Scholar
     

  • 22.

    Wright, J., Both, C., Cotton, P. A. & Bryant, D. Quality vs. quantity: energetic and nutritional trade-offs in parent provisioning strategies. J. Anim. Ecol. 67, 620–634 (1998).


    Google Scholar
     

  • 23.

    Callaghan, C. T. et al. Generalists are the most urban-tolerant of birds: a phylogenetically controlled analysis of ecological and life history traits using a novel continuous measure of bird responses to urbanization. Oikos 128, 845–858 (2019).


    Google Scholar
     

  • 24.

    Butler, D., Digman, C. J., Makropoulos, C. & Davies, J. W. Urban Drainage (CRC Press, Boca Raton, 2018).


    Google Scholar
     

  • 25.

    Dahl, T. E. & Steadman, S. M. Status and trends of wetlands in the coastal watersheds of the Conterminous United States 2004 to 2009. U.S. Department of the Interior, Fish and Wildlife Service and National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Washington D.C. 46 pp. (2013).

  • 26.

    Rosenberg, K. V. et al. Decline of North American avifauna. Science 366, 120–124 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Martínez-Abraín, A. & Jiménez, J. Anthropogenic areas as incidental substitutes for original habitat. Conserv. Biol. 30, 593–598 (2016).

    PubMed 

    Google Scholar
     

  • 28.

    Botson, B. A., Gawlik, D. E. & Trexler, J. C. Mechanisms that generate resource pulses in a fluctuating wetland. PLoS ONE 11, e0158864 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 29.

    Kingsford, R. T., Roshier, D. A. & Porter, J. L. Australian waterbirds—time and space travellers in dynamic desert landscapes. Mar. Freshw. Res. 61, 875–884 (2010).

    CAS 

    Google Scholar
     

  • 30.

    Kingsford, R. T., Curtin, A. L. & Porter, J. Water flows on Cooper Creek in arid Australia determine ‘boom’ and ‘bust’ periods for waterbirds. Biol. Conserv. 88, 231–348 (1999).


    Google Scholar
     

  • 31.

    Roshier, D. A., Whetton, P. H., Allan, R. J. & Robertson, A. I. Distribution and persistence of temporary wetlands in arid Australia in relation to climate. Austral Ecol. 26, 371–384 (2001).


    Google Scholar
     

  • 32.

    Oro, D., Genovart, M., Tavecchia, G., Fowler, M. S. & Martínez-Abraín, A. Ecological and evolutionary implications of food subsidies from humans. Ecol. Lett. 16, 1501–1514 (2013).

    PubMed 

    Google Scholar
     

  • 33.

    Kushlan, J. A. & Frohring, P. C. The history of the southern Florida Wood Stork population. Wilson Bull. 98, 368–386 (1986).


    Google Scholar
     

  • 34.

    Frederick, P. C. & Spalding, M. G. Factors affecting reproductive success of wading birds (Ciconiiformes) in the Everglades ecosystem. In Everglades: The Ecosystem and its Restoration (eds Davis, S. M. & Ogden, J. C.) 659–691 (St. Lucie Press, Boca Raton, 1994).


    Google Scholar
     

  • 35.

    Ogden, J. C. A comparison of wading bird nesting dynamics, 1931–1946 and 1974–1989 as an indication of changes in ecosystem conditions in the southern Everglades. In Everglades: The Ecosystem and Its Restoration (eds Davis, S. M. & Ogden, J. C.) 533–570 (St. Lucie Press, Boca Raton, 1994).


    Google Scholar
     

  • 36.

    Crozier, G. E. & Gawlik, D. E. Wading bird nesting effort as an index to wetland ecosystem integrity. Waterbirds 26, 303–324 (2003).


    Google Scholar
     

  • 37.

    Frederick, P., Gawlik, D. E., Ogden, J. C., Cook, M. I. & Lusk, M. The white ibis and wood stork as indicators for restoration of the everglades system. Ecol. Indic. 9, S83–S95 (2009).


    Google Scholar
     

  • 38.

    United States Fish and Wildlife Service (USFWS). Revised recovery plan for the U.S. breeding population of the wood stork (U.S. Fish and Wildlife Service, Atlanta, 1996).


    Google Scholar
     

  • 39.

    United States Fish and Wildlife Service (USFWS). Reclassification of the U.S. breeding population of the Wood Stork from endangered to threatened. Federal Regist. 79, 37078–37103 (2014).


    Google Scholar
     

  • 40.

    Gawlik, D. E. South Florida Wading Bird Report (South Florida Water Management District, West Palm Beach, Florida, 2000).


    Google Scholar
     

  • 41.

    Kahl, M. P. Jr. Food ecology of the wood stork (Mycteria americana) in Florida. Ecol. Monogr. 34, 97–117 (1964).


    Google Scholar
     

  • 42.

    Yurek, S. & DeAngelis, D. L. Resource concentration mechanisms facilitate foraging success in simulations of a pulsed oligotrophic wetland. Landsc. Ecol. 34, 583–601 (2019).


    Google Scholar
     

  • 43.

    Gawlik, D. E. The effects of prey availability on the numerical response of wading birds. Ecol. Monogr. 72, 329–346 (2002).


    Google Scholar
     

  • 44.

    Trexler, J. C. et al. Ecological scale and its implications for freshwater fishes in the Florida Everglades. In The Everglades, Florida Bay, and Coral Reefs of the Florida Keys: An Ecosystem Sourcebook (eds Porter, J. & Porter, K.) 153–181 (CRC Press, Boca Raton, 2002).


    Google Scholar
     

  • 45.

    Kushlan, J. A. Prey choice by tactile-foraging wading birds. Proc. Colon. Waterbird Group 3, 133–142 (1979).


    Google Scholar
     

  • 46.

    Gawlik, D. E., Evans, B. A., Klassen, J. A., Gottlieb, A. & Cyriacks, W. Wood Stork use of roadway corridor features in South Florida (Report to the Florida Department of Transportation, Fort Lauderdale, Florida, 2017).


    Google Scholar
     

  • 47.

    Marzluff, J. M. A decadal review of urban ornithology and a prospectus for the future. Ibis 159, 1–13 (2016).


    Google Scholar
     

  • 48.

    Fuller, R. A., Warren, P. H. & Gaston, K. J. Daytime noise predicts nocturnal singing in urban robins. Biol. Lett. 3, 398–370 (2007).


    Google Scholar
     

  • 49.

    Schlaepfer, M. A., Runge, M. C. & Sherman, P. W. Ecological and evolutionary traps. Trends Ecol. Evol. 17, 474–480 (2002).


    Google Scholar
     

  • 50.

    Jokimäki, J. & Huhta, E. Artificial nest predation and abundance of birds along an urban gradient. Condor 102, 838–847 (2000).


    Google Scholar
     

  • 51.

    Loss, S. R., Will, T. & Marra, P. P. The impact of free-ranging domestic cats on wildlife in the United States. Nat. Commun. 4, 1396 (2013).

    ADS 
    PubMed 

    Google Scholar
     

  • 52.

    Schmidt, K. A. & Whelan, C. J. Effects of exotic Lonicera and Rhamnus on songbird nest predation. Conserv. Biol. 13, 1502–1506 (1999).


    Google Scholar
     

  • 53.

    Borgmann, K. L. & Rodewald, A. D. Nest predation in an urbanizing landscape: the role of exotic shrubs. Ecol. Appl. 17, 1757–1765 (2004).


    Google Scholar
     

  • 54.

    Kahl, M. P. Jr. Comparative ethology of the Ciconiidae. Part 3. The wood storks (genera Mycteria and Ibis). Ibis 114, 15–29 (1972).


    Google Scholar
     

  • 55.

    Frederick, P. C. & Collopy, M. W. Nesting success of five ciconiiform species in relation to water conditions in the Florida everglades. Auk 106, 625–634 (1989).


    Google Scholar
     

  • 56.

    Schoener, T. W. Sizes of feeding territories among birds. Ecology 49, 123–141 (1968).


    Google Scholar
     

  • 57.

    Kushlan, J. A. Wading bird predation in a seasonally fluctuating pond. Auk 93, 464–476 (1976).


    Google Scholar
     

  • 58.

    DeAngelis, D. L., Trexler, J. C., Cosner, C., Obaza, A. & Jopp, F. Fish population dynamics in a seasonally varying wetland. Ecol. Model. 221, 1131–1137 (2010).


    Google Scholar
     

  • 59.

    Anderson, W. B., Wait, D. A. & Stapp, P. Resources from another place and time: responses to pulses in a spatially subsidized system. Ecology 89, 660–670 (2008).

    PubMed 

    Google Scholar
     

  • 60.

    Williams, S. E., Shoo, L. P., Isaac, J. L., Hoffmann, A. A. & Langham, G. Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS Biol. 6, e325 (2008).

    PubMed Central 

    Google Scholar
     

  • 61.

    Lowry, H., Lill, A. & Wong, B. B. M. Behavioural responses of wildlife to urban environments. Biol. Rev. 88, 537–549 (2013).

    PubMed 

    Google Scholar
     

  • 62.

    Wong, B. B. M. & Candolin, U. Behavioral responses to changing environments. Behav. Ecol. 26, 665–673 (2015).


    Google Scholar
     

  • 63.

    Sih, A. Understanding variation in behavioural responses to human-induced rapid environmental change: a conceptual overview. Anim. Behav. 85, 1077–1088 (2013).


    Google Scholar
     

  • 64.

    Snell-Rood, E. C. An overview of evolutionary causes and consequences of behavioural plasticity. Anim. Behav. 85, 1004–1011 (2013).


    Google Scholar
     

  • 65.

    Alberti, M. et al. Global urban signatures of phenotypic change in animal and plant populations. Proc. Natl. Acad. Sci. 114, 8951–8956 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 66.

    Hendry, A. P., Farrugia, T. J. & Kinnison, M. T. Human influences on rates of phenotypic change in wild animal populations. Mol. Ecol. 17, 20–29 (2008).

    PubMed 

    Google Scholar
     

  • 67.

    Pomeroy, D. & Kibuule, M. Increasingly urban Marabou Storks start breeding four months early in Kampala, Uganda. Ostrich 88, 261–266 (2017).


    Google Scholar
     

  • 68.

    Gilbert, N. I. et al. Are white storks addicted to junk food? Impacts of landfill use on movement and behaviour of resident white storks (Ciconia ciconia) from a partially migratory population. Mov. Ecol. 4, 7 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 69.

    Thabethe, V. & Downs, C. T. Citizen science reveals widespread supplementary feeding of African woolly-necked storks in suburban areas of KwaZulu-Natal, South Africa. Urban Ecosyst. 21, 965–973 (2018).


    Google Scholar
     

  • 70.

    Martin, J., French, K. & Major, R. Population and breeding trends of an urban colonizer: the Australian white ibis. Wildl. Res. 37, 230–239 (2010).


    Google Scholar
     

  • 71.

    Dorn, N. J. et al. Aquatic prey switching and urban foraging by the White Ibis Eudocimus albus are determined by wetland hydrologic conditions. Ibis 153, 323–335 (2011).


    Google Scholar
     

  • 72.

    Murray, M. H. et al. From wetland specialist to hand-fed generalist: shifts in diet and condition with provisioning for a recently urbanized wading bird. Philos. Trans. R. Soc. B 373, 20170100 (2018).


    Google Scholar
     

  • 73.

    Clergeau, P. & Yésou, P. Behavioural flexibility and numerous potential sources of introduction for the sacred ibis: Causes of concern in western Europe?. Biol. Invasions 8, 1381–1388 (2006).


    Google Scholar
     

  • 74.

    Calle, L. & Gawlik, D. E. Anthropogenic food in the diet of the Sacred Ibis (Threskiornis aethiopicus), a non-native wading bird in southeastern FL, USA. Fla. Field Nat. 39, 1–15 (2011).


    Google Scholar
     

  • 75.

    Seto, K., Fragkias, C. M., Güneralp, B. & Reilly, M. K. A meta-analysis of global urban land expansion. PLoS ONE 6, e23777 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 76.

    Seto, K. C., Güneralp, B. & Hutrya, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. PNAS 109, 16083–16088 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 77.

    Gibbs, J. P. Wetland loss and biodiversity conservation. Conserv. Biol. 14, 314–317 (2000).


    Google Scholar
     

  • 78.

    Dahl, T. E. Florida’s wetlands: an update on status and trends 1985 to 1996 80 (U.S. Department of the Interior, Fish and Wildlife Service, Washington, 2005).


    Google Scholar
     

  • 79.

    Dahl, T. E. Status and trends of wetlands in the conterminous United States 2004 to 2009 108 (Department of the Interior, Fish and Wildlife Service, Washington, 2011).


    Google Scholar
     

  • 80.

    Loveless, C. A. A study of the vegetation in the Florida Everglades. Ecology 40, 1–9 (1959).


    Google Scholar
     

  • 81.

    Beerens, J. M., Noonburg, E. G. & Gawlik, D. E. Linking dynamic habitat selection with wading bird foraging distribution across resource gradients. PLoS ONE 10, e0128182 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 82.

    Petersen, M. L. Quantifying wading bird resource selection and nesting effort: a tool for the restoration of pulsed ecosystems. Ph.D. Dissertation, Florida Atlantic University (2017).

  • 83.

    Telis, P. A. The Everglades Depth Estimation Network (EDEN) for support of ecological and biological assessments. U.S. Geological Survey Fact Sheet: 2006–3087, Reston, Virginia (2006).

  • 84.

    Rodgers, J. A. Jr. Protocol for monitoring the reproductive success of Wood Storks in the southeast United States (2005).

  • 85.

    Herring, G. & Gawlik, D. E. Potential for successful population establishment of the nonindigenous sacred ibis in the Florida Everglades. Biol. Invasions 10, 969–976 (2008).


    Google Scholar
     

  • 86.

    Burnham, K. P. & Anderson, D. R. Multimodel inference understanding AIC and BIC in model selection. Sociol. Methods Res. 33, 261–304 (2004).

    MathSciNet 

    Google Scholar
     

  • 87.

    R Core Team. R: A language and environment for statistical computing. R version 3.2.4 (R Foundation for Statistical Computing, Vienna, 2017).


    Google Scholar
     

  • 88.

    Nakagawa, S. & Shielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).


    Google Scholar
     

  • 89.

    Shmueli, G., Minka, T. P., Kadane, J. B., Borle, S. & Boatwright, P. A useful distribution for fitting discrete data: revival of the Conway–Maxell–Poisson distribution. J. R. Stat. Soc. C Appl. 54, 127–142 (2005).

    MATH 

    Google Scholar
     

  • 90.

    Sellers, K. F. & Shmueli, G. A flexible regression model for count data. Ann. Appl. Stat. 4, 943–961 (2010).

    MathSciNet 
    MATH 

    Google Scholar
     

  • 91.

    Harrison, X. A. et al. A brief introduction to mixed effects modelling and multi-model inference in ecology. PeerJ 6, e4794 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 92.

    Brooks, M. E. et al. “glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).


    Google Scholar
     

  • 93.

    Hartig, F. DHARMa: Residual diagnostics for hierarchal (multi-level/mixed) regression models. R package version 0.3.0. https://florianhartig.github.io/DHARMa/ (2020).

  • 94.

    Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).


    Google Scholar
     

  • 95.

    Clarke, K. R. & Green, R. H. Statistical design and analysis for ‘biological effects’ study. Mar. Ecol. Prog. Ser. 46, 213–226 (1988).

    ADS 

    Google Scholar
     

  • 96.

    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46 (2001).


    Google Scholar
     

  • 97.

    Anderson, M. J. Distance-based test for homogeneity of multivariate dispersions. Biometrics 62, 245–253 (2006).

    MathSciNet 
    PubMed 
    MATH 

    Google Scholar
     

  • 98.

    Oksanen, J. et al. Vegan: community ecology package https://cran.r-project.org/web/packages/vegan/ (2019).

  • 99.

    Clarke, K. R. & Gorley, R. N. Primer v7: User Manual: Tutorial (Primer-E, Plymouth, 2015).


    Google Scholar
     

  • 100.

    Herring, H. & Gawlik, D. E. Resource selection functions for Wood Stork foraging habitat in the southern Everglades. Waterbirds 34, 133–142 (2011).


    Google Scholar
     

  • 101.

    Esri. ArcGIS Desktop: Release 10.4.1. Redlands (2015).

  • [ad_2]

    Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *