CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Judd, A. G. The global importance and context of methane escape from the seabed. Geo-Mar. Lett. 23, 147–154 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • 2.

    Kvenvolden, K. & Cooper, C. Natural seepage of crude oil into the marine environment. Geo-Mar. Lett. 23, 140–146 (2003).

    ADS 
    CAS 

    Google Scholar
     

  • 3.

    Etiope, G. Climate science: Methane uncovered. Nat. Geosci. 5, 373 (2012).

    ADS 
    CAS 

    Google Scholar
     

  • 4.

    Hornafius, J. S., Quigley, D. & Luyendyk, B. P. The world’s most spectacular marine hydrocarbon seeps (Coal Oil Point, Santa Barbara Channel, California): Quantification of emissions. J. Geophys. Res.: Oceans 104, 20703–20711 (1999).

    ADS 
    CAS 

    Google Scholar
     

  • 5.

    Salmi, M. S., Johnson, H. P., Leifer, I. & Keister, J. E. Behavior of methane seep bubbles over a pockmark on the Cascadia continental margin. Geosphere 7, 1273–1283 (2011).

    ADS 

    Google Scholar
     

  • 6.

    Vagle, S., Hume, J., McLaughlin, F., MacIsaac, E. & Shortreed, K. A methane bubble curtain in meromictic Sakinaw Lake, British Columbia. Limnol. Oceanogr. 55, 1313–1326 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • 7.

    Greinert, J., Artemov, Y., Egorov, V., De Batist, M. & McGinnis, D. 1300-m-high rising bubbles from mud volcanoes at 2080 m in the Black Sea: Hydroacoustic characteristics and temporal variability Earth Planet. Sci. Lett. 244, 1–15 (2006).

    CAS 

    Google Scholar
     

  • 8.

    Schneider von Deimling, J., Brockhoff, J. & Greinert, J. Flare imaging with multibeam systems: Data processing for bubble detection at seeps. Geochem. Geophys. Geosyst. 8, 22 (2007).


    Google Scholar
     

  • 9.

    Vagle, S. & Farmer, D. M. A comparison of four methods for bubble size and void fraction measurements. IEEE J. Oceanic Eng. 23, 211–222 (1998).

    ADS 

    Google Scholar
     

  • 10.

    Wang, B., Socolofsky, S. A., Breier, J. A. & Seewald, J. S. Observations of bubbles in natural seep flares at MC 118 and GC 600 using in situ quantitative imaging. J. Geophys. Res.: Oceans 121, 2203–2230 (2016).

    ADS 

    Google Scholar
     

  • 11.

    Johansen, C., Todd, A. C. & MacDonald, I. R. Time series video analysis of bubble release processes at natural hydrocarbon seeps in the northern Gulf of Mexico. Mar. Pet. Geol. 82, 21–34 (2017).


    Google Scholar
     

  • 12.

    Leifer, I., De Leeuw, G. & Cohen, L. H. Optical measurement of bubbles: system design and application. J. Atmosp. Oceanic Technol. 20, 1317–1332 (2003).

    ADS 

    Google Scholar
     

  • 13.

    Römer, M., Sahling, H., Pape, T., Bohrmann, G. & Spieß, V. Quantification of gas bubble emissions from submarine hydrocarbon seeps at the Makran continental margin (offshore Pakistan). Journal of Geophysical Research: Oceans 117 (2012).

  • 14.

    MacDonald, I. R., Bender, L. C., Vardaro, M., Bernard, B. & Brooks, J. M. Thermal and visual time-series at a seafloor gas hydrate deposit on the Gulf of Mexico slope Earth Planet. Sci. Lett. 233, 45–59 (2005).

    CAS 

    Google Scholar
     

  • 15.

    Sassen, R. et al. Stability of thermogenic gas hydrate in the Gulf of Mexico: Constraints on models of climate change. Natural gas hydrates: occurrence, distribution, and detection, 131–143 (2001).

  • 16.

    Judd, A., Hovland, M., Dimitrov, L., Garcia Gil, S. & Jukes, V. The geological methane budget at continental margins and its influence on climate change. Geofluids 2, 109–126 (2002).

    CAS 

    Google Scholar
     

  • 17.

    Daneshgar Asl, S., Dukhovskoy, D. S., Bourassa, M. & MacDonald, I. R. Hindcast modeling of oil slick persistence from natural seeps. Remote Sens. Environ. 189, 96–107 (2017).

    ADS 

    Google Scholar
     

  • 18.

    Garcia-Pineda, O., MacDonald, I., Zimmer, B., Shedd, B. & Roberts, H. Remote-sensing evaluation of geophysical anomaly sites in the outer continental slope, northern Gulf of Mexico. Deep Sea Res. Part II 57, 1859–1869 (2010).

    ADS 

    Google Scholar
     

  • 19.

    Roberts, H. H., Hardage, B. A., Shedd, W. W. & Hunt, J. Jr. Seafloor reflectivity—An important seismic property for interpreting fluid/gas expulsion geology and the presence of gas hydrate. Lead. Edge 25, 620–628 (2006).


    Google Scholar
     

  • 20.

    Roberts, H. H., Feng, D. & Joye, S. B. Cold-seep carbonates of the middle and lower continental slope, northern Gulf of Mexico. Deep Sea Res. Part II 57, 2040–2054 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • 21.

    Miglietta, M. P., Hourdez, S., Cowart, D. A., Schaeffer, S. W. & Fisher, C. Species boundaries of Gulf of Mexico vestimentiferans (Polychaeta, Siboglinidae) inferred from mitochondrial genes. Deep Sea Res. Part II 57, 1916–1925 (2010).

    ADS 

    Google Scholar
     

  • 22.

    Roberts, H., Shedd, W. & Hunt, J. Jr. Dive site geology: DSV ALVIN (2006) and ROV JASON II (2007) dives to the middle-lower continental slope, northern Gulf of Mexico. Deep Sea Res. Part II 57, 1837–1858 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • 23.

    Joye, S. B., Bowles, M. W., Samarkin, V. A., Hunter, K. S. & Niemann, H. Biogeochemical signatures and microbial activity of different cold-seep habitats along the Gulf of Mexico deep slope. Deep Sea Res. Part II 57, 1990–2001 (2010).

    ADS 
    CAS 

    Google Scholar
     

  • 24.

    Becker, J. et al. Global bathymetry and elevation data at 30 arc seconds resolution: SRTM30_PLUS. Mar. Geodesy 32, 355–371 (2009).


    Google Scholar
     

  • 25.

    Mitchell, G. A., Orange, D. L., Gharib, J. J. & Kennedy, P. Improved detection and mapping of deepwater hydrocarbon seeps: optimizing multibeam echosounder seafloor backscatter acquisition and processing techniques. Mar. Geophys. Res. 39, 323–347 (2018).


    Google Scholar
     

  • 26.

    Sager, W. W., MacDonald, I. R. & Hou, R. Geophysical signatures of mud mounds at hydrocarbon seeps on the Louisiana continental slope, northern Gulf of Mexico. Mar. Geol. 198, 97–132 (2003).

    ADS 

    Google Scholar
     

  • 27.

    Klaucke, I. et al. Acoustic investigation of cold seeps offshore Georgia, eastern Black Sea. Mar. Geol. 231, 51–67 (2006).

    ADS 

    Google Scholar
     

  • 28.

    Zaruba, A., Krepper, E., Prasser, H.-M. & Vanga, B. R. Experimental study on bubble motion in a rectangular bubble column using high-speed video observations. Flow Meas. Instrum. 16, 277–287 (2005).

    CAS 

    Google Scholar
     

  • 29.

    Razaz, M., Di Iorio, D., Wang, B. & MacDonald, I. Temporal variations of a natural hydrocarbon seep using a deep-sea camera system. Journal of Atmospheric and Oceanic Technology (Under Review) (2019).

  • 30.

    Rehder, G., Brewer, P. W., Peltzer, E. T. & Friederich, G. Enhanced lifetime of methane bubble streams within the deep ocean. Geophys. Res. Lett. 29, 21–24 (2002).


    Google Scholar
     

  • 31.

    Kannberg, P. K. et al. Temporal variation of methane flares in the ocean above Hydrate Ridge. Oregon. 368, 33–42 (2013).

    CAS 

    Google Scholar
     

  • 32.

    Boles, J., Clark, J., Leifer, I. & Washburn, L. Temporal variation in natural methane seep rate due to tides, Coal Oil Point area California. J. Geophys. Res.: Oceans 106, 27077–27086 (2001).

    ADS 

    Google Scholar
     

  • 33.

    Chanton, J. P., Martens, C. S. & Kelley, C. A. Gas transport from methane-saturated, tidal freshwater and wetland sediments. Limnol. Oceanogr. 34, 807–819 (1989).

    ADS 
    CAS 

    Google Scholar
     

  • 34.

    Xu, W., Lowell, R. P. & Peltzer, E. T. Effect of seafloor temperature and pressure variations on methane flux from a gas hydrate layer: Comparison between current and late Paleocene climate conditions. J. Geophys. Res.: Solid Earth 106, 26413–26423 (2001).

    CAS 

    Google Scholar
     

  • 35.

    Dickens, G. R. & Quinby-Hunt, M. S. Methane hydrate stability in seawater. Geophys. Res. Lett. 21, 2115–2118 (1994).

    ADS 
    CAS 

    Google Scholar
     

  • 36.

    Clayton, C. & Hay, S. J. B. o. t. G. S. o. D. Gas migration mechanisms from accumulation to surface. 41, 12–23 (1994).

  • 37.

    Di Iorio, D. & Farmer, D. M. J. T. J. o. t. A. S. o. A. Path‐averaged turbulent dissipation measurements using high‐frequency acoustical scintillation analysis. 96, 1056–1069 (1994).

  • 38.

    Di Iorio, D., Lemon, D. & Chave, R. A self-contained acoustic scintillation instrument for path-averaged measurements of flow and turbulence with application to hydrothermal vent and bottom boundary layer dynamics. J. Atmos. Oceanic Technol. 22, 1602–1617 (2005).

    ADS 

    Google Scholar
     

  • 39.

    Di Iorio, D. & Yüce, H. Observations of mediterranean flow into the Black Sea. J. Geophys. Res.: Oceans 104, 3091–3108 (1999).

    ADS 

    Google Scholar
     

  • 40.

    Tatarskii, V. I. The effects of the turbulent atmosphere on wave propagation. Jerusalem: Israel Program for Scientific Translations, 1971 (1971).

  • 41.

    Dissanayake, A. L., Gros, J. & Socolofsky, S. A. Integral models for bubble, droplet, and multiphase plume dynamics in stratification and crossflow. Environ. Fluid Mech. 18, 1167–1202 (2018).

    CAS 

    Google Scholar
     

  • 42.

    MacDonald, I. et al. Transfer of hydrocarbons from natural seeps to the water column and atmosphere. Geofluids 2, 95–107 (2002).

    CAS 

    Google Scholar
     

  • 43.

    Dee, D. P. et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. R. Meteorol. Soc. 137, 553–597 (2011).

    ADS 

    Google Scholar
     

  • 44.

    Garcia-Pineda, O. et al. Using SAR images to delineate ocean oil slicks with a texture-classifying neural network algorithm (TCNNA). Can. J. Remote. Sens. 35, 411–421 (2009).

    ADS 

    Google Scholar
     

  • 45.

    Garcia-Pineda, O. et al. Transience and persistence of natural hydrocarbon seepage in Mississippi Canyon, Gulf of Mexico. Deep Sea Res. Part II 129, 119–129 (2016).

    CAS 

    Google Scholar
     

  • 46.

    Hazmat, N. Open water oil identification job aid for aerial observation. Office of Response and Restoration Job Aid (2007).

  • 47.

    MacDonald, I. R. et al. Natural and unnatural oil slicks in the Gulf of Mexico. J. Geophys. Res.: Oceans 120, 8364–8380 (2015).

    ADS 
    CAS 

    Google Scholar
     

  • 48.

    Wang, B. & Socolofsky, S. A. A deep-sea, high-speed, stereoscopic imaging system for in situ measurement of natural seep bubble and droplet characteristics. Deep Sea Res. Part I 104, 134–148 (2015).


    Google Scholar
     

  • 49.

    Xu, G. & Di Iorio, D. The relative effects of particles and turbulence on acoustic scattering from deep-sea hydrothermal vent plumes. J. Acoust. Soc. Am. 130, 1856–1867 (2011).

    ADS 
    PubMed 

    Google Scholar
     

  • 50.

    Xu, G. & Di Iorio, D. Deep sea hydrothermal plumes and their interaction with oscillatory flows. Geochemistry, Geophysics, Geosystems 13 (2012).

  • 51.

    Gilcoto, M., Jones, E. & Fariña-Busto, L. Robust estimations of current velocities with four-beam broadband ADCPs. J. Atmos. Oceanic Technol. 26, 2642–2654 (2009).

    ADS 

    Google Scholar
     

  • 52.

    Leonte, M. et al. Using carbon isotope fractionation to constrain the extent of methane dissolution into the water column surrounding a natural hydrocarbon gas seep in the northern Gulf of Mexico. Geochem. Geophys. Geosyst. 19, 4459–4475 (2018).

    ADS 
    CAS 

    Google Scholar
     

  • 53.

    Rehder, G., Leifer, I., Brewer, P. G., Friederich, G. & Peltzer, E. T. Controls on methane bubble dissolution inside and outside the hydrate stability field from open ocean field experiments and numerical modeling. Mar. Chem. 114, 19–30 (2009).

    CAS 

    Google Scholar
     

  • 54.

    Gros, J. et al. Oil spill modeling in deep waters: Estimation of pseudo-component properties for cubic equations of state from distillation data. Mar. Pollut. Bull. 137, 627–637 (2018).

    CAS 
    PubMed 

    Google Scholar
     

  • 55.

    Kvenvolden, K. A. Gas hydrates—geological perspective and global change. Rev. Geophys. 31, 173–187 (1993).

    ADS 

    Google Scholar
     

  • 56.

    National Research Council Committee on Oil in the Sea. Oil in the Sea III: Inputs, fates and effects. Vol. Appendix C (2003).

  • 57.

    Atlas, R. et al. A cross-calibrated, multiplatform ocean surface wind velocity product for meteorological and oceanographic applications. Bull. Am. Meteor. Soc. 92, 157–174 (2011).

    ADS 

    Google Scholar
     

  • 58.

    Chassignet, E. P., Smith, L. T., Halliwell, G. R. & Bleck, R. North Atlantic simulations with the Hybrid Coordinate Ocean Model (HYCOM): Impact of the vertical coordinate choice, reference pressure, and thermobaricity. J. Phys. Oceanogr. 33, 2504–2526 (2003).

    ADS 

    Google Scholar
     



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *