Environmental engineering is a professional engineering discipline that takes from broad scientific topics like chemistry, biology, ecology, geology, hydraulics, hydrology, microbiology, and mathematics to create solutions that will protect and also improves the health of living organisms and improve the quality of the environment. Environmental engineering is a sub-discipline of civil engineering and chemical engineering.

Environmental engineering is the application of scientific and engineering principles to improve and maintain the environment to:

  • protect human health,
  • protect nature’s beneficial ecosystems,
  • and improve environmental-related enhancement of the quality of human life.

Environmental engineers devise solutions for waste water management, water and air pollution control, recycling, waste disposal, and public health. They design municipal water supply and industrial wastewater treatment systems, and design plans to prevent waterborne diseases and improve sanitation in urban, rural and recreational areas. They evaluate hazardous-waste management systems to evaluate the severity of such hazards, advise on treatment and containment, and develop regulations to prevent mishaps. They implement environmental engineering law, as in assessing the environmental impact of proposed construction projects.

Environmental engineers study the effect of technological advances on the environment, addressing local and worldwide environmental issues such as acid rain, global warming, ozone depletion, water pollution and air pollution from automobile exhausts and industrial sources.

Most jurisdictions impose licensing and registration requirements for qualified environment engineers.

History

Ancient civilizations

Environmental engineering is a name for work that has been done since early civilizations, as people learned to modify and control the environmental conditions to meet needs. As people recognized that their health was related to the quality of their environment, they built systems to improve it. The ancient Indus Valley Civilization (3300 B.C.E. to 1300 B.C.E.) had advanced control over their water resources. The public work structures found at various sites in the area include wells, public baths,water storage tanks, a drinking water system, and a city-wide sewage collection system. They also had an early canal irrigation system enabling large-scale agriculture.

From 4000 to 2000 B.C.E., many civilizations had drainage systems and some had sanitation facilities, including the Mesopotamian Empire, Mohenjo-Daro, Egypt, Crete, and the Orkney Islands in Scotland.The Greeks also had aqueducts and sewer systems that used rain and wastewater to irrigate and fertilize fields.

The first aqueduct in Rome was constructed in 312 B.C.E., and from there, they continued to construct aqueducts for irrigation and safe urban water supply during droughts. They also built an underground sewer system as early as the 7th century B.C.E. that fed into the Tiber River, draining marshes to create farmland as well as removing sewage from the city.

Modern era

Very little change was seen from the fall of Rome until the 19th century, where improvements saw increasing efforts focused on public health. Modern environmental engineering began in London in the mid-19th century when Joseph Bazalgette designed the first major sewerage system following the Great Stink. The city’s sewer system conveyed raw sewage to the River Thames, which also supplied the majority of the city’s drinking water, leading to an outbreak of cholera.The introduction of drinking water treatment and sewage treatment in industrialized countries reduced waterborne diseases from leading causes of death to rarities.

The field emerged as a separate academic discipline during the middle of the 20th century in response to widespread public concern about water and air pollution and other environmental degradation. As society and technology grew more complex, they increasingly produced unintended effects on the natural environment. One example is the widespread application of the pesticide DDT to control agricultural pests in the years following World War II. While the agricultural benefits were outstanding and crop yields increased dramatically, reducing world hunger, and malaria was controlled better than ever before, the pesticide brought numerous bird species to the edge of extinction due to its impact on their reproductive cycle. The story of DDT as vividly told in Rachel Carson’s Silent Spring (1962) is considered to be the birth of the modern environmental movement, which led to the modern field of “environmental engineering.”

Education

Many universities offer environmental engineering programs through either the department of civil engineering or chemical engineering and also including electronic projects to develop and balance the environmental conditions. Environmental engineers in a civil engineering program often focus on hydrology, water resources management, bioremediation, and water and wastewater treatment plant design. Environmental engineers in a chemical engineering program tend to focus on environmental chemistry, advanced air and water treatment technologies, and separation processes. Some subdivisions of environmental engineering include natural resources engineering and agricultural engineering.

Courses for students fall into a few broad classes:

  • Mechanical engineering courses oriented towards designing machines and mechanical systems for environmental use such as water and wastewater treatment facilities, pumping stations, garbage segregation plants, and other mechanical facilities.
  • Environmental engineering or environmental systems courses oriented towards a civil engineering approach in which structures and the landscape are constructed to blend with or protect the environment.
  • Environmental chemistrysustainable chemistry or environmental chemical engineering courses oriented towards understanding the effects of chemicals in the environment, including any mining processes, pollutants, and also biochemical processes.
  • Environmental technology courses oriented towards producing electronic or electrical graduates capable of developing devices and arti facts able to monitor, measure, model and control environmental impact, including monitoring and managing energy generation from renewable sources.

Curriculum

The following topics make up a typical curriculum in environmental engineering:

  1. Mass and Energy transfer
  2. Environmental chemistry
    1. Inorganic chemistry
    2. Organic Chemistry
    3. Nuclear Chemistry
  3. Growth models
    1. Resource consumption
    2. Population growth
    3. Economic growth
  4. Risk assessment
    1. Hazard identification
    2. Dose-response Assessment
    3. Exposure assessment
    4. Risk characterisation
    5. Comparative risk analysis
  5. Water pollution
    1. Water resources and pollutants
    2. Oxygen demand
    3. Pollutant transport
    4. Water and waste water treatment
  6. Air pollution
    1. Industry, transportation, commercial and residential emissions
    2. Criteria and toxic air pollutants
    3. Pollution modelling (e.g. Atmospheric dispersion modeling)
    4. Pollution control
    5. Air pollution and meteorology
  7. Global change
    1. Greenhouse effect and global temperature
    2. Carbon, nitrogen, and oxygen cycle
    3. IPCC emissions scenarios
    4. Oceanic changes (ocean acidification, other effects of global warming on oceans) and changes in the stratosphere 
  8. Solid waste management and resource recovery
    1. Life cycle assessment
    2. Source reduction
    3. Collection and transfer operations
    4. Recycling
    5. Waste-to-energy conversion
    6. Landfill

9 thoughts on “WHAT IS ENVIRONMENTAL ENGINEERING ?”
  1. Do you have a spam problem on this site; I also am a blogger, and
    I was curious about your situation; we have created some nice practices and we are looking to exchange methods with other
    folks, be sure to shoot me an email if interested.

  2. Hi there, I found your blog by means of Google whilst searching for a similar topic, your web site got here up, it
    looks great. I have bookmarked it in my google bookmarks.

    Hello there, simply turned into alert to your weblog through Google, and located that it’s truly
    informative. I’m gonna watch out for brussels. I’ll appreciate for those who continue this in future.
    Lots of other people will likely be benefited out of your
    writing. Cheers!

  3. Just want to say your article is as astonishing.
    The clearness in your post is simply nice and i can assume you are an expert on this
    subject. Fine with your permission allow me to grab your RSS feed
    to keep up to date with forthcoming post. Thanks a million and please continue the gratifying work.

  4. Heya i’m for the first time here. I came across this board and I find It truly helpful & it helped me out a lot.
    I am hoping to give something back and help others like you aided me.

  5. Thank you for every other wonderful article. The place else may anybody get that kind of info in such an ideal means of writing?
    I’ve a presentation next week, and I am at the look for such info.

  6. We absolutely love your blog and find a lot of your post’s to be exactly I’m looking for.
    Do you offer guest writers to write content for yourself?
    I wouldn’t mind publishing a post or elaborating
    on a few of the subjects you write in relation to here.
    Again, awesome website!

  7. What’s up everybody, here every one is sharing these kinds of knowledge,
    thus it’s pleasant to read this web site, and I used to visit this website everyday.

  8. That is a very good tip particularly to those fresh to the blogosphere.
    Short but very accurate information… Appreciate your sharing this one.
    A must read post!

Leave a Reply

Your email address will not be published. Required fields are marked *