CIVIL ENGINEERING 365 ALL ABOUT CIVIL ENGINEERING


  • 1.

    Myers, S. S. et al. Human health impacts of ecosystem alteration. Proc. Natl Acad. Sci. USA 110, 18753–18760 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Gottdenker, N. L., Streicker, D. G., Faust, C. L. & Carroll, C. R. Anthropogenic land use change and infectious diseases: a review of the evidence. EcoHealth 11, 619–632 (2014).

    PubMed 

    Google Scholar
     

  • 3.

    Keesing, F. et al. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468, 647–652 (2010).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 4.

    Ostfeld, R. S. & LoGiudice, K. Community disassembly, biodiversity loss, and the erosion of an ecosystem service. Ecology 84, 1421–1427 (2003).


    Google Scholar
     

  • 5.

    Johnson, P. T. J. et al. Living fast and dying of infection: host life history drives interspecific variation in infection and disease risk. Ecol. Lett. 15, 235–242 (2012).

    PubMed 

    Google Scholar
     

  • 6.

    Johnson, P. T. J., Preston, D. L., Hoverman, J. T. & Richgels, K. L. D. Biodiversity decreases disease through predictable changes in host community competence. Nature 494, 230–233 (2013).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Newbold, T. et al. Widespread winners and narrow-ranged losers: land use homogenizes biodiversity in local assemblages worldwide. PLoS Biol. 16, e2006841 (2018).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 9.

    Faust, C. L. et al. Pathogen spillover during land conversion. Ecol. Lett. 21, 471–483 (2018).

    ADS 
    PubMed 

    Google Scholar
     

  • 10.

    Becker, D. J., Streicker, D. G. & Altizer, S. Using host species traits to understand the consequences of resource provisioning for host-parasite interactions. J. Anim. Ecol. 87, 511–525 (2018).

    PubMed 

    Google Scholar
     

  • 11.

    Plowright, R. K. et al. Pathways to zoonotic spillover. Nat. Rev. Microbiol. 15, 502–510 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 12.

    Shah, H. A., Huxley, P., Elmes, J. & Murray, K. A. Agricultural land-uses consistently exacerbate infectious disease risks in Southeast Asia. Nat. Commun. 10, 4299 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 13.

    Gottdenker, N. L., Chaves, L. F., Calzada, J. E., Saldaña, A. & Carroll, C. R. Host life history strategy, species diversity, and habitat influence Trypanosoma cruzi vector infection in changing landscapes. PLoS Negl. Trop. Dis. 6, e1884 (2012).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 14.

    Fornace, K. M. et al. Association between landscape factors and spatial patterns of Plasmodium knowlesi infections in Sabah, Malaysia. Emerg. Infect. Dis. 22, 201–209 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 15.

    Pulliam, J. R. C. et al. Agricultural intensification, priming for persistence and the emergence of Nipah virus: a lethal bat-borne zoonosis. J. R. Soc. Interface 9, 89–101 (2012).

    PubMed 

    Google Scholar
     

  • 16.

    Kilpatrick, A. M. Globalization, land use, and the invasion of West Nile virus. Science 334, 323–327 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 17.

    Popp, A. et al. Land-use futures in the shared socio-economic pathways. Glob. Environ. Change 42, 331–345 (2017).


    Google Scholar
     

  • 18.

    Civitello, D. J. et al. Biodiversity inhibits parasites: broad evidence for the dilution effect. Proc. Natl Acad. Sci. USA 112, 8667–8671 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 19.

    LoGiudice, K., Ostfeld, R. S., Schmidt, K. A. & Keesing, F. The ecology of infectious disease: effects of host diversity and community composition on Lyme disease risk. Proc. Natl Acad. Sci. USA 100, 567–571 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 20.

    Purvis, A., Gittleman, J. L., Cowlishaw, G. & Mace, G. M. Predicting extinction risk in declining species. Proc. Biol. Soc 267, 1947–1952 (2000).

    CAS 

    Google Scholar
     

  • 21.

    Johnson, P. T. J., Ostfeld, R. S. & Keesing, F. Frontiers in research on biodiversity and disease. Ecol. Lett. 18, 1119–1133 (2015).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Olival, K. J. et al. Host and viral traits predict zoonotic spillover from mammals. Nature 546, 646–650 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 23.

    Young, H., Griffin, R. H., Wood, C. L. & Nunn, C. L. Does habitat disturbance increase infectious disease risk for primates? Ecol. Lett. 16, 656–663 (2013).

    PubMed 

    Google Scholar
     

  • 24.

    Hudson, L. N. et al. The database of the PREDICTS (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems) project. Ecol. Evol. 7, 145–188 (2017).

    PubMed 

    Google Scholar
     

  • 25.

    Lloyd-Smith, J. O. et al. Epidemic dynamics at the human–animal interface. Science 326, 1362–1367 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 26.

    Joseph, M. B., Mihaljevic, J. R., Orlofske, S. A. & Paull, S. H. Does life history mediate changing disease risk when communities disassemble? Ecol. Lett. 16, 1405–1412 (2013).

    PubMed 

    Google Scholar
     

  • 27.

    Kamiya, T., O’Dwyer, K., Nakagawa, S. & Poulin, R. What determines species richness of parasitic organisms? A meta-analysis across animal, plant and fungal hosts. Biol. Rev. Camb. Philos. Soc. 89, 123–134 (2014).

    PubMed 

    Google Scholar
     

  • 28.

    Lee, K. A., Wikelski, M., Robinson, W. D., Robinson, T. R. & Klasing, K. C. Constitutive immune defences correlate with life-history variables in tropical birds. J. Anim. Ecol. 77, 356–363 (2008).

    CAS 
    PubMed 

    Google Scholar
     

  • 29.

    Rohr, J. R. et al. Towards common ground in the biodiversity–disease debate. Nat. Ecol. Evol. 4, 24–33 (2020).

    PubMed 

    Google Scholar
     

  • 30.

    Hosseini, P. et al. Does the impact of biodiversity differ between emerging and endemic pathogens? The need to separate the concepts of hazard and risk. Philos. Trans. R. Soc. Lond. B 372, 20160129 (2017).


    Google Scholar
     

  • 31.

    Brearley, G. et al. Wildlife disease prevalence in human-modified landscapes. Biol. Rev. Camb. Philos. Soc. 88, 427–442 (2013).

    PubMed 

    Google Scholar
     

  • 32.

    Burkett-Cadena, N. D. & Vittor, A. Y. Deforestation and vector-borne disease: Forest conversion favors important mosquito vectors of human pathogens. Basic Appl. Ecol. 26, 101–110 (2018).


    Google Scholar
     

  • 33.

    Hassell, J. M., Begon, M., Ward, M. J. & Fèvre, E. M. Urbanization and disease emergence: dynamics at the wildlife–livestock-human interface. Trends Ecol. Evol. 32, 55–67 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 34.

    Holmes, E. C., Rambaut, A. & Andersen, K. G. Pandemics: spend on surveillance, not prediction. Nature 558, 180–182 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 35.

    Wardeh, M. et al. Database of host-pathogen and related species interactions, and their global distribution. Sci. Data 2, 150049 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 36.

    Stephens, P. R. et al. Global Mammal Parasite Database version 2.0. Ecology 98, 1476 (2017).

    PubMed 

    Google Scholar
     

  • 37.

    Plourde, B. T. et al. Are disease reservoirs special? Taxonomic and life history characteristics. PLoS ONE 12, e0180716 (2017).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 38.

    Han, B. A., Schmidt, J. P., Bowden, S. E. & Drake, J. M. Rodent reservoirs of future zoonotic diseases. Proc. Natl Acad. Sci. USA 112, 7039–7044 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Chamberlain, S. & Szocs, E. Taxize: taxonomic search and retrival in R. F1000Res 18, 191 (2013).


    Google Scholar
     

  • 40.

    Wertheim, H. F. L., Horby, P. & Woodall, J. P. Atlas of Human Infectious Diseases (Wiley-Blackwell, 2012).

  • 41.

    Taylor, L. H., Latham, S. M. & Woolhouse, M. Risk factors for human disease emergence. Philos. Trans. R. Soc. B 356, 983–989 (2001).

    CAS 

    Google Scholar
     

  • 42.

    Han, B. A., Kramer, A. M. & Drake, J. M. Global patterns of zoonotic disease in mammals. Trends Parasitol. 32, 565–577 (2016).

    PubMed 
    PubMed Central 

    Google Scholar
     

  • 43.

    Røttingen, J. A. et al. New vaccines against epidemic infectious diseases. N. Engl. J. Med. 376, 610–613 (2017).

    PubMed 

    Google Scholar
     

  • 44.

    Harris, N. C. & Dunn, R. R. Using host associations to predict spatial patterns in the species richness of the parasites of North American carnivores. Ecol. Lett. 13, 1411–1418 (2010).

    PubMed 

    Google Scholar
     

  • 45.

    Cooper, N. et al. Phylogenetic host specificity and understanding parasite sharing in primates. Ecol. Lett. 15, 1370–1377 (2012).

    PubMed 

    Google Scholar
     

  • 46.

    Young, H. S. et al. Interacting effects of land use and climate on rodent-borne pathogens in central Kenya. Philos. Trans. R. Soc. B 372, 20160116 (2017).


    Google Scholar
     

  • 47.

    Newbold, T. et al. Global patterns of terrestrial assemblage turnover within and among land uses. Ecography 39, 1151–1163 (2016).


    Google Scholar
     

  • 48.

    Cooper, N., Kamilar, J. M. & Nunn, C. L. Host longevity and parasite species richness in mammals. PLoS ONE 7, e42190 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 49.

    González-Suárez, M., Lucas, P. M. & Revilla, E. Biases in comparative analyses of extinction risk: mind the gap. J. Anim. Ecol. 81, 1211–1222 (2012).

    PubMed 

    Google Scholar
     

  • 50.

    Ducatez, S. & Lefebvre, L. Patterns of research effort in birds. PLoS ONE 9, e89955 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 51.

    Paull, S. H. et al. From superspreaders to disease hotspots: linking transmission across hosts and space. Front. Ecol. Environ. 10, 75–82 (2012).

    PubMed 

    Google Scholar
     

  • 52.

    Blangiardo, M., Cameletti, M., Baio, G. & Rue, H. Spatial and spatio-temporal models with R-INLA. Spat. Spatio-Temporal Epidemiol. 4, 33–49 (2013).


    Google Scholar
     

  • 53.

    Hooten, M. B. & Hobbs, N. T. A guide to Bayesian model selection for ecologists. Ecol. Monogr. 85, 3–28 (2015).


    Google Scholar
     

  • 54.

    Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2010).

  • 55.

    Dallas, T. A. et al. Host traits associated with species roles in parasite sharing networks. Oikos 128, 23–32 (2019).


    Google Scholar
     

  • 56.

    R: A language and environment for statistical computing. http://www.R-project.org/ (R Foundation for Statistical Computing, 2019).



  • Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *